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ABSTRACT 
In this paper we describe the design and implementation of 
a tangible balance beam that we created for early algebra 
education. We also present data from an exploratory study 
with seven children (ages 9-10 years) in a local elementary 
summer school classroom. Our results provide insight into 
how students solve algebra problems using our tangible 
interface, how they coordinate multiple representations 
(both digital and physical) in the problem solving process, 
and how they understand the concept of algebraic equality 
in this context. The data suggests that our interface helps 
students think about equations in a relational context, which 
has been shown to be an important skill for understanding 
more advanced concepts in algebra. Whether or not the 
combination of physical and digital representations 
provided by our interface helps students apply this 
relational understanding to equations written using standard 
algebraic notation is an open question that we hope to 
investigate in future work.  
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1. INTRODUCTION 
The BEAM [9] is a tangible user interface designed to help 
children learn fundamental concepts of algebra. It consists 
of a wooden balance beam representing an algebraic 
equation (Figure 1). The left and right arms of the beam 
have positions numbered one through nine that stand for 
coefficients in the terms of an equation. Integers 
(represented with plastic tokens called pebbles) can be 
stacked onto each position to construct equations and 
inequalities. For example, to create the equation, 4 + 3 = 7, 
a child would first place two pebbles on the left side of the 

beam, one on the 3 and the other on the 4. The beam would 
then tilt because of the weight of the pebbles on the left 
side. To make the beam balance again, the child would 
place a final pebble on the 7 on the right side (Figure 2).  

 
Figure 1. The BEAM. Equations are constructed on a tangible 
wooden beam with plastic tokens. The graphical user interface 

is displayed on a tethered laptop. 

This process can be expanded to support more complex 
equations emphasizing multiplication skills. For example, 
one way to create the equation, (2 × 10) = (2 × 2) + (4 × 4), 
is shown in Figure 2. This equation could be rearranged to 
form other combinations of terms that produce the same 
equality, or 20 = 20. 

 
Figure 2. A solution for the equation (2x10) = (2x2) + (4x4). 

Our project builds on previous work by dynamically linking 
a physical balance beam with a computer display that shows 
the corresponding equations using standard algebraic 
notation (Figure 3). Our beam uses a USB cord and 
embedded chips to determine the state of the beam and 
visualize the results virtually in real time.  

In this paper we present details of the beam’s design and 
implementation. We also present data from an exploratory 
study with seven children (ages 9-10). Our results provide 
insight into how students solve algebra problems using our 
tangible interface, how they coordinate multiple 
representations (both digital and physical) in the problem 
solving process, and how they understand the concept of 
algebraic equality in this context. The data suggests that our 
interface helps students think about equations in a relational 
context, which has been shown to be an important skill for 
understanding more advanced concepts in algebra.  
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2. BACKGROUND 
2.1 Balance and Equality 
The metaphor of balance extends to many topics, 
particularly algebra education and the concept of equality. 
Knuth, Stephens, McNeil, and Alibali [7] have studied 
students' conceptions of the equal sign as an operational 
(i.e., “the answer is”) rather than relational (i.e. “both sides 
have the same value”) symbol. This operational 
understanding has been shown to be common in algebra 
education and to negatively affect students’ performance on 
algebra assessments [7]. Researchers have examined the 
relationship between knowledge of operation patterns and 
difficulties with equations to find that when operational 
patterns are highlighted students are less likely to use the 
correct strategy to solve an equation [11].  

These understandings and performance routines are built 
from two main forms of knowledge in math experiences: 
conceptual (highlighting the concept of equivalence) or 
procedural (highlighting the procedure for solving 
equivalence exercises) [16]. Both forms of instruction 
increase conceptual understanding as well as the 
understanding and correct use of instructed procedures; 
however, conceptual instruction also leads to proper transfer 
of procedural methods in other problems [16].  

Not surprisingly, the balance beam analogy is often used to 
reinforce the concept of equality in early algebra education. 
Three prominent examples exist: the Virtual Balance Scale, 
a online application that displays equations using standard 
algebraic notation and a virtual pan balance [13]; Hands-On 
Equations, a physical manipulative with tokens on a static 
pan balance [3], and the EquaBeam, a physical balance 
beam that tilts as tokens are hung on coefficient positions 
across the beam [5]. The EquaBeam is similar to our 
physical beam in design, but lacks the ability to connect to a 
computer and dynamically link multiple representations. 
The work presented in this paper attempts to merge 
advantages of these three systems, by combining a physical 
balance beam with a dynamically linked computer display.  

Many researchers have explored the use of tangible 
interfaces and technology to support mathematics learning 
[6, 14, 17, 18, 19]. Though many digitally enhanced 
manipulatives with mathematical focus have been 
developed, those with a focus in algebra are rare. DigiQuilt 
allows users to design patchwork quilt-blocks in a screen-
based manipulative environment found to promote 
engagement and skill with fractions [8]. Quadratic is a 
virtual interactive tabletop manipulative for collaborative 
exploration of algebraic expressions making graph 
production an easy and engaging [15]. The work presented 
here attempts to build on these tools and expand tangible 
math education to include foundational algebraic concepts. 

Research has shown mixed results in tangible education; 
concrete materials can help or hinder children’s learning 
depending on the appropriateness of the material for the 

lesson, the structure of the environment, and the connection 
made between the material and the lesson [4]. Perceptually 
rich concrete objects often result in more errors in student 
work; though these errors are less likely to be conceptual 
[12]. In recent research, Marshall, Cheng, and Luckin [10] 
compared learning outcomes in adults using tasks on both a 
physical and a virtual balance beam; however, they found 
no differences in learning outcomes in the two conditions 
[10]. Blikstein and Wilensky [2] found the combination of 
physical tools with virtual environments draw attention to 
particular attributes, highlight procedures, and moderate 
cognitive load drawing focus to the primary topic.  

3. THE BEAM 
3.1 Physical Interface 
The physical balance is constructed from a thirty-six inch 
wooden beam connected to a stand by means of a simple 
ball bearing. Digits (1–9) representing the coefficients in the 
terms of an equation are placed evenly towards either end of 
the beam. The pebbles provide the weights needed to shift 
the beam and may be stacked to add value to terms. We 
constructed the pebbles out of ABS plastic rods that we 
machined to shape. We selected ABS for its machinability, 
heft, sturdiness, and feel. The tens pebbles are ten times that 
of the unit pebbles in weight, volume, and height and 
colored blue to differentiate them from the green units. 
LEGO® Technic connectors are glued inside each pebble. 
They provide a stable, two-wire electrical and mechanical 
connection; they can be stacked to an arbitrary height; they 
have a low profile (approximately ¼ inch high); and they 
are familiar to many children. Each pebble also contains a 
Dallas Semiconductor 1-Wire DS2401 chip that provides a 
unique 48-bit serial number. These serial numbers are 
transferred from the pebbles to the system using a roll-call 
protocol established by the 1-Wire bus system.  

3.2 Digital/Physical Information Transfer 
An Arduino Mega board (http://arduino.cc/) serves as the 
connection from the physical system to the laptop computer. 
Each position along the beam is a separate 1-Wire bus 
connected to a specific input pin on the Arduino. This 
connection consists of LEGO® Technic connectors wired 
along the beam to the ground and one unique data pin on 
the board. The Arduino determines the position and value of 
all the pebbles on the beam (with a scan rate of 100ms) as 
the pieces are stacked on the positions, and relays this 
information back to the laptop computer.  

3.3 Graphical User Interface 
We created a Processing application (http://processing.org) 
to display equations from the beam using standard algebraic 
notation (Figure 3). As pebbles are added to the beam, their 
values appear by “falling” into the onscreen algebraic 
equation. Likewise, when the pieces are removed, they drop 
off of the screen and the equation shifts to occupy the space.  
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4. RESEARCH STUDY 
To improve our understanding of how the beam might be 
used in schools, we conducted an exploratory study with 
seven children (ages 9-10) in a local elementary summer 
school classroom. We were interested in how students used 
the beam to solve problems and how they coordinated the 
physical and digital representations in the process.  

4.1 Participants 
Participants were recruited from a mixed-grade classroom 
(grades 2 - 4). The school primarily serves middle-income 
families with diverse ethnic backgrounds. Seven children 
(six girls and one boy, ages 9-10 years) volunteered with 
parental consent and were randomly assigned to three 
groups of two students with a remaining group of one. 

4.2 Procedure 
The study was conducted at a table in the back the students’ 
classroom while class was in session. We video and audio 
recorded each session with the exception of the group of 
one, who did not wish to be recorded. Each session lasted 
an average of 25 minutes resulting in approximately four 
hours of observational data. 

During the first session, we gave each participant a written 
pre-test with three open response questions developed by 
Knuth et al. [7] to asses students’ understanding of the equal 
sign as a relational operator. After the pre-test, we asked the 
participants to solve a small number of equations using 
pencil and paper, introduced each group to the BEAM, and 
had them practice by constructing two or three equations on 
their own. In the second session, we gave students 
additional equations and asked them to create them on the 
BEAM. Two students continued for a third session, working 
through equations both on and off the BEAM. We also 
asked each student to complete a written post-test, identical 
to the pre-test, at the end of the final session. 

5. RESULTS 
5.1 Equation Strategies 
Students used the beam to construct equations in much the 
same way that they solve written equations; most 
prominently, they tended to put the answer on the right side 
by either swapping sides physically or verbally. For 
example, given the equation 9 = 8 + 1, students would swap 
the sides of the equation physically so that the single term 
was on the right side of the beam (i.e. they would construct 
the equation with 8 + 1 on the left side and the 9 on the right 
side). Other students would construct the equation as it was 
written; that is, 9 on the left side and 8 + 1 on the right side. 
However, when asked what they had created they would 
explain, “eight plus one” (pointing the right side) “equals 
nine” (pointing to the left side).  

More complex equations forced students to deviate from 
these patterns. To create any number greater than 9 using 
the beam, students must either add values to a coefficient, 
consider using a different coefficient or a combination.  

5.2 Interpretation of Equal Sign 
According the equality pre/posttest, there was no change in 
interpretation of the equal symbol for almost all of the 
participants over the course of the study. Although students 
did not express a relational understanding in the pre/post 
test, they did discuss their exercises with the beam in a 
relational context; children demonstrated an understanding 
that the values on the sides were or were not the same based 
on the beam’s tilt. 

5.3 Missing Values 
When asked to find missing values for equations in the 
pencil and paper exercises, students used four strategies. 
Rittle-Johnson and Alibali identified three of these 
strategies: add all; add to equal sign; and equalize [16]. We 
observed one additional strategy that we call solve and 
continue. In this strategy, first the correct value for the 
blank is found using the Equalize method; however, the 
student continues to work on the equation by adding the 
values for both sides together. For example,  

3 + 4 + 2 = 5 + 4    �     9 = 9     �    18 
Of these four, the Equalize procedure is the only process 
resulting in the correct answer; only one student 
demonstrated the “Equalize” procedure on paper. When 
given missing value equations using the beam all five 
students used the Equalize procedure. The difference 
between pencil and paper exercises and the beam is likely 
due to the real-time feedback provided by the beam, both 
the physical tilt of the beam itself and the onscreen = or ≠ 
sign. Whether or not this feedback contributes to the 
learning process in any way is an open question. 

5.4 Multiple Representations 
One goal of multiple linked representations is to provide an 
opportunity for students to map concepts from one 
representation to another, ideally reducing their cognitive 
load [1]. To understand how students coordinated 
representations with the BEAM, we analyzed our video 
recordings to determine student gestures and eye gaze from 
moment to moment. We found that the children seemed to 
be using the computer display for three main purposes: 1) 
verification of pebble placement on the intended number 
with a stable electrical connection, 2) checking to see that 
they had in fact created a balanced equation using the white 
or yellow = or ≠ sign, and 3) reading their final equation.  
Students consistently used the tilt of the beam to determine 
the equality of equations. When there was an error in their 
solution, students would validate incorrectness with the 
beam’s tilt. However, when their answers were correct, the 
beam’s tilt served as a secondary form of feedback, and they 
would validate correctness based on the equal sign 
displayed in the screen.  

6. Study Limitations 
The study reported here was exploratory in nature and 
involved only a small number of children interacting with 
the beam in two or three short sessions.  
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7. Conclusion & Future Work 
In addition to revealing some shortcomings of our existing 
design, the exploratory study presented here also highlights 
opportunities for future research. Our results provide some 
evidence that students apply a relational understanding of 
the equal sign when solving problems using use the beam, 
and that they can solve problems using the beam that are 
more difficult with pencil and paper. An open question, 
therefore, is whether or not using the beam can help 
students develop and apply a relational understanding of 
equality to their written work without the beam. We 
hypothesize that by dynamically linking physical and digital 
representations, the beam will help to reinforce the 
metaphor of physical balance in the context of algebraic 
equality. This is applicable for both the physical and virtual 
representations (e.g. the Virtual Balance Scale); however, 
we hope to test whether or not a physical representation will 
be more effective. We also hope to explore ways in which 
the beam can be most effectively incorporated into existing 
early algebra curriculum.    
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