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Abstract 

This chapter explores the idea that when given appropriate tools, young children can actively 

engage in computer programming and robotics activities in a way that is consistent with 

developmentally appropriate practice. In particular, this project proposes the use of emerging 

tangible user interface (TUI) technology to fundamentally re-envision the way in which children 

program computers. In short, rather than using a mouse or keyboard to write programs to control 

robots, children instead construct physical computer programs by connecting interlocking, 

“smart” wooden blocks. In this chapter we will describe our development efforts both in terms of 

curriculum and technology. We will also share results from a two-year design-based research 

study conducted in three kindergarten classrooms.  
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Tangible Programming in Early Childhood: 

Revisiting Developmental Assumptions through New Technologies 

We are surrounded by technology. From pens and pencils to cell phones and digital cameras, 

technology permeates our existence. Yet, in the early grades, children learn very little about this. 

For decades early childhood curriculum has focused on literacy and numeracy, with some 

attention paid to science, in particular to the natural world—insects, volcanoes, plants, and the 

Arctic. And, while understanding the natural world is important, developing children’s 

knowledge of the surrounding man-made world is also important (Bers, 2008). This is the realm 

of technology and engineering, which focus on the development and application of tools, 

machines, materials, and processes to help solve human problems. 

Early childhood education hasn’t ignored this; it is common to see young children using 

cardboard or recycled materials to build cities and bridges. However, what is unique to our man-

made world today is the fusion of electronics with mechanical structures. We go to the bathroom 

to wash our hands, and the faucets “know” when to start dispensing water. The elevator “knows” 

when someone’s little hands are in between the doors and shouldn’t close. Our cell phones 

“know” how to take pictures, send emails, and behave as alarm clocks. Even our cars “know” 

where we want to go and can take us there without getting lost. We live in a world in which bits 

and atoms are increasingly integrated (Gershenfeld, 2000); however, we do not teach our young 

children about this. In the early schooling experiences, we teach children about polar bears and 

cacti, which are probably more remote from their everyday experience than smart faucets and 

cellular phones. There are several reasons for the lack of focus on technologies in early 

childhood, but two of the most common claims are that young children are not developmentally 
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ready to understand such complex and abstract phenomena, and that there is a lack of technology 

with age-appropriate interfaces that allow children to develop their own technologically-rich 

projects. In this chapter we address both of these claims by presenting research to evaluate young 

children’s ability to build, program, and understand their own robotic creations through the use 

of a novel programming interface designed specifically for young children 

Background 

Our work is rooted in notions of developmentally appropriate practice (DAP), a 

perspective within early childhood education concerned with creating learning environments 

sensitive to children's social, emotional, physical, and cognitive development. DAP is a 

framework produced by the National Association for the Education of Young Children (Copple 

& Bredekamp, 2009) that outlines practice that promotes young children’s optimal learning and 

development. DAP is based on theories of child development, the strengths and weaknesses of 

individual children uncovered through authentic assessment, and individual children’s cultural 

background as defined by community and family (Copple & Bredekamp, 2009).  

DAP is built upon the theory of developmental stages introduced by Jean Piaget, which 

suggests that children enter the concrete operational stage at age six or seven. According to 

Piaget, at this age, a child gains the ability to perform mental operations in his/her head and also 

to reverse those operations. As a result, a concrete operational child has a more sophisticated 

understanding of number, can imagine the world from different perspectives, can systematically 

compare, sort, and classify objects, and can understand notions of time and causality 

(Richardson, 1998). Based on this developmental model, one might make the argument that a 

child’s ability to program a computer might be predicted by his or her general developmental 
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level, and, that by extension, a pre-operational kindergartener (typically five years old) may be 

too young to benefit from or understand computer programming. However, since its 

introduction, various problems and inconsistencies have been identified with Piaget’s stage 

model. For example, studies have shown that when a task and its context are made clear to 

children, they exhibit logical thought and understanding well before the ages that Piaget 

suggested as a lower limit (Richardson, 1998).  

In the early days of personal computing, there was lively debate over the developmental 

appropriateness of computer technology use in early elementary classrooms (Clements & 

Sarama, 2003). Today, however, the pressing question in no longer whether but how we should 

introduce computer technology in early elementary school (Clements & Sarama, 2002). For 

example, a 1992 study found that elementary school children exposed to exploratory software 

showed gains in self-esteem, non-verbal skills, long-term memory, manual dexterity, and 

structural knowledge. When combined with other non-computer activities, these students also 

showed improvements in verbal skills, abstraction, problem solving, and conceptual skills 

(Haugland, 1992). Other studies have demonstrated that computer use can serve as a catalyst for 

positive social interaction and collaboration (Clements & Sarama, 2002; Wang & Ching, 2003). 

Of course, the developmental appropriateness of the technology used by young children depends 

on the context. What software is being used? And how is it integrated with and supported by the 

broader classroom curriculum? Fortunately, we live in an advantageous time for introducing 

technology in early childhood. Given the increasing mandate to make early childhood programs 
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more academically challenging1, technology can provide a playful bridge to integrate academic 

demands with personally meaningful projects (Bers, 2008). 

Robotics and Computer Programming in Early Childhood Education 

“Computer technology” is a broad term that can mean many things, especially in the 

context of a classroom. We believe that robotics is one type of educational technology that holds 

special potential for early childhood classrooms where children engage in cognitive as well as 

motor and social skills development. Furthermore, in early childhood content areas tend not to be 

isolated, but integrated more broadly into classroom curriculum that encompasses different 

content and skills; learning can be project-driven and open-ended; and student work does not 

have to fit into an hour-long class period. Thus, robotics can be a good integrator of curricular 

content (Bers, Ponte, Juelich, Viera, & Schenker, 2002). 

Robotics provides opportunities for young children to learn about sensors, motors, and 

the digital domain in a playful way by building their own projects, such as cars that follow a 

light, elevators that work with touch sensors, and puppets that can play music. Young children 

can become engineers by playing with gears, levers, motors, sensors, and programming loops, as 

well as storytellers by creating their own meaningful projects that move in response to their 

environment (Bers, 2008; Wang & Ching, 2003). Robotics can also be a gateway for children to 

learn about applied mathematical concepts, the scientific method of inquiry, and problem solving 

(Rogers & Portsmore, 2004). Moreover, robotic manipulatives invite children to participate in 

social interactions and negotiations while playing to learn and learning to play (Resnick, 2003). 

                                                
1 As of 2006, thirty-seven states have included engineering/technology standards in their educational frameworks.  
 



Tangible Programming 

 

7 

Robotics, however, is about more than just creating physical artifacts. In order to bring 

robots to “life” children must also create computer programs—digital artifacts that allow robots 

to move, blink, sing, and respond to their environment. Previous research has shown that 

children as young as four years old can understand the basic concepts of computer programming 

and can build and program simple robotics projects (Bers, 2008; Cejka, Rogers, & Portsmore, 

2006; Bers, Rogers, Beals, Portsmore, Staszowski, Cejka, Carberry, Gravel, Anderson, & 

Barnett, 2006). Furthermore, early studies with the text-based language, Logo, have shown that 

computer programming, when introduced in a structured way, can help young children with 

variety of cognitive skills, including basic number sense, language skills, and visual memory 

(Clements, 1999).  

Nonetheless, computer programming is difficult for novices of any age. Kelleher and 

Pausch (2005) offer a taxonomy containing well over 50 novice programming systems, a great 

number of which aim to ease or eliminate the process of learning language syntax, perhaps the 

most often cited source of novice frustration. Beyond syntax, there are many specific conceptual 

hurdles faced by novice programmers as well as fundamental misconceptions about the nature of 

computers and computer programming. Ben-Ari (1998) points out that unlike the beginning 

physics student who at least has a naïve understanding of the physical world, beginning 

programmers have no effective model of a computer upon which to build new knowledge.  

Worse, rarely is an effort made to help students develop a working model. According to Norman 

(1986), the primary problem facing novice programmers is the gap between the representation 

the brain uses when thinking about a problem and the representation a computer will accept.  
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In addition to the above challenges faced by novice programmers, we must also consider 

the developmental needs and capabilities of young children. McKeithen, Reitman, Rueter, and 

Hirtle (1981) conducted a study that explored the differences in the ability of expert and novice 

computer programmers to recall details of computer programs.  In their analysis, they theorize 

that because novice programmers lack adequate mental models for programming tasks, they rely 

on rich common language associations for these concepts. For example, computer words like 

LOOP, FOR, STRING, and CASE have very different common language meanings.  Reflecting 

on this result, it seems reasonable to expect that young children will have an especially difficult 

time building conceptual models for programming concepts because they have fewer mental 

schemas on which to build.  

Likewise Rader, Brand, and Lewis (1997) conducted a study with the Apple’s KidSim 

programming system in which 2nd/3rd graders and 4th/5th graders used the system for one year 

with minimal structured instruction. At the end of the year, the younger children had 

significantly more difficulty with programming concepts such as individual actions, rule order, 

and subroutine. However, the authors suggest that with structured instruction of programming 

concepts, the young children would have developed a much better understanding of the system.  

However, regardless of the way in which the content is presented, most current 

programming environments are not well-suited for very young children. One problem is that the 

syntax of text-based computer languages, such as Logo, can be unintuitive and frustrating for 

novice programmers. This is exacerbated for young children who are still learning how to read. 

Modern visual programming languages such as ROBOLAB2 allow children to program by 

dragging and connecting icons on the computer screen. And, while this approach simplifies 
                                                
2 http://www.legoengineering.com/ 
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language syntax, the interfaces require young children to use a mouse to navigate hierarchical 

menus, click on icons, and drag lines to very small target areas on a computer screen. All of this 

requires fine motor skills that make it difficult for young children to participate (Hourcade, 

Bederson, Druin, & Guimbretière, 2004). As a result, adults often have to sit with young children 

and give click-by-click instructions to make programming possible, which poses challenges for 

children’s learning (Beals & Bers, 2006). It also makes it difficult to implement computer 

programming in average schools, where there are often only one or two adults per twenty-five 

children. Attempts have been made to create simpler versions of these languages. However, the 

resulting interfaces often obscure some of the most important aspects of programming, such as 

the notion of creating a sequence of commands to form a program’s flow-of-control. In the next 

section we will present work on tangible computer programming that explores new interfaces to 

address some of the challenges presented here. 

Tangible Computer Programming 

With the emergence of tangible user interface technology (TUI), we have a new means to 

separate the intellectual act of computer programming from the confounding factor of modern 

graphical user interfaces. And, with this, we have an opportunity to build a much better 

understanding of developmental capabilities of young children with respect to computer 

programming. Just as young children can read books that are appropriate for their age-level, we 

propose that young children can write simple but interesting computer programs, provided they 

have access to a developmentally-appropriate programming language. Indeed, in our own 

extensive previous work with robotics and young children, we observed that when presented 
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with new technologies that make use of well-established sensori-motor skills, young children are 

able to display complex mental operations.  

We believe that we can overcome the inherent limitations of modern desktop and laptop 

computers by doing nothing short of removing them from children’s learning experiences. Thus, 

rather than write computer programs with a keyboard or mouse, we have created a system that 

allows children to instead construct physical computer programs by connecting interlocking 

wooden blocks (see Figure 1). This technique is called tangible programming.  

 

Figure 1. A tangible programming language for robotics developed 

at Tufts University. With this language, children construct 

programs using interlocking wooden blocks. 

A tangible programming language, like any other type of computer language, is simply a 

tool for telling a computer what to do. With a text-based language, a programmer uses words 

such as BEGIN, IF, and REPEAT to instruct a computer. This code must be written according to 

strict, and often frustrating, syntactic rules. With a visual language, words are replaced by 

pictures, and programs are expressed by arranging and connecting icons on the computer screen 
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with the mouse. There are still syntax rules to follow, but they can be conveyed to the 

programmer through a set of visual cues.  

Instead of relying on pictures and words on a computer screen, tangible languages use 

physical objects to represent the various aspects of computer programming. Users arrange and 

connect these physical elements to construct programs. Rather than falling back on implied rules 

and conventions, tangible languages can exploit the physical properties of objects, such as size, 

shape, and material to express and enforce syntax. For example, the interlocking wooden blocks 

shown in Figure 1 describe the language syntax (i.e. a sequential connection of blocks). In fact, 

with this language, while it is possible to make mistakes in program logic, it is impossible to 

produce a syntax error.  

In moving away from the mouse-based interface, our pilot studies, conducted in public 

schools in the Boston area, have suggested that tangible languages might have the added benefit 

of improving both the style and amount of collaboration occurring between students. And, since 

the process of constructing programs is now situated in the classroom at large—on children’s 

desks or on the floor—children’s programming work can be more open and visible and can 

become more a part of presentations and discussions of technology projects. Likewise, physical 

programming elements can be incorporated into whole-class instruction activities without the 

need for a shared computer display or an LCD projector. 
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Figure 2. This picture taken from a pilot study show kindergarten 

students using the tangible programming language developed at 

Tufts to program a robot to act out a short story.  

The idea of tangible programming was first introduced in the mid 1970’s by Radia 

Perlman, then a researcher at the MIT Logo Lab. Perlman believed that the syntax rules of text-

based computer languages represented a serious barrier to learning for young children. To 

address this issue she developed an interface called Slot Machines (Perlman, 1976) that allowed 

young children to insert cards representing various Logo commands into three colored racks. 

This idea of tangible programming was revived nearly two decades later (Suzuki & Kato, 1995), 

and since then a variety of tangible languages have been created in a number of different 

research labs around the world (e.g., McNerney, 2004; Wyeth, 2008; Smith, 2007).  

In almost all cases, the blocks that make up tangible programming languages contain 

some form of electronic components. And, when connected, the blocks form structures that are 

more than just abstract representations of algorithms; they are also working, specialized 

computers that can execute algorithms through the sequential interaction of the blocks. 
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Unfortunately, the blocks that make up these languages tend to be delicate and expensive. And, 

as a result, tangible programming languages have seldom been used outside of research lab 

settings. At Tufts we have taken a different approach (Horn & Jacob, 2007). Programs created 

with our language are purely symbolic representations of algorithms—much in the way that Java 

or C++ programs are only collections of text files. An additional piece of technology must be 

used to translate the abstract representations of a program into a machine language that will 

control a robot. This approach allows us to create inexpensive and durable parts, and provides 

greater freedom in the design of the physical components of the language. Our current prototype 

uses a collection of image processing techniques to convert physical programs into digital 

instructions. For the system to work, each block in the language is imprinted with a circular 

symbol called a TopCode (Horn, 2008). These codes allow the position, orientation, size and 

shape, and type of each statement to be quickly determined from a digital image. The image 

processing routines work under a variety of lighting conditions without the need for human 

calibration. Our prototype uses a standard consumer web camera connected to a laptop computer. 

Children initiate a compile by pressing the spacebar on the computer, and their program is 

downloaded onto a robot in a mater of seconds. 

Tangible Programming Curriculum for Kindergarten 

Research has shown that mere exposure to computer programming in an unstructured 

way has little demonstrable effect on student learning (Clements, 1999). For example, a 1997 

study involving the visual programming language, KidSim, found that elementary school 

students failed to grasp many aspects of the language, leading the authors to suggest that more 

explicit instruction might have improved the situation (Rader et al., 1997). Therefore, an 
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important aspect of our work is to develop curriculum that utilizes tangible programming to 

introduce a series of powerful ideas from computer science in a structured, age-appropriate way. 

The term powerful idea refers to a concept that is at once personally useful, interconnected with 

other disciplines, and rooted in intuitive knowledge that a child has internalized over a long 

period of time (Papert, 1991). We introduce these powerful ideas in a context in which their use 

allows very young children to solve compelling problems. 

Table 1 lists example powerful ideas from computer programming that we have selected 

to emphasize in our curriculum using tangible programming. Based on these powerful ideas we 

developed a preliminary 12-hour curriculum module for use in Kindergarten classrooms that 

introduces a subset of these concepts through a combination of whole-class instruction, 

structured small-group challenge activities, and open-ended student projects. We piloted this 

curriculum in three Kindergarten classrooms in the Boston area, using the tangible programming 

blocks described above and LEGO Mindstorms RCX construction kits. Initially, we provided 

students with pre-assembled robot cars to teach preliminary computer programming concepts. As 

the unit progressed, students disassembled these cars to build diverse robotic creations that 

incorporated arts and craft materials, recycled goods such as cardboard tubes and boxes, and a 

limited number of LEGO parts. Table 2 provides a brief overview of the activities that we 

included in the curriculum.  
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Table 1 

Powerful ideas from computer programming and robotics emphasized in our curriculum 
 
Powerful Idea Description 

Computer Programming This is the fundamental idea that robots are not living things that 

act of their own accord. Instead, robots act out computer programs 

written by human beings. Not only that, children can create their 

own computer programs to control a robot.  

Command Sequences &  

Control Flow 

The idea that simple commands can be combined into sequences 

of actions to be acted out by a robot in order. 

Loops The idea that sequences of instructions can be modified to repeat 

indefinitely or in a controlled way. 

Sensors The idea that a robot can sense its surrounding environment 

through a variety of modalities, and that a robot can be 

programmed to respond to changes in its environment.  

Parameters The idea that some instructions can be qualified with additional 

information.  

Branches The idea that you can ask a question in a program, and, depending 

on the answer, have a robot do one thing or another.  

Subroutines The idea that you can treat a set of instructions as a single unit that 

can be called from other parts of a program. 
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Table 2 

Kindergarten Computer Programming and Robotics Curriculum Activities 

Robot Dance: In this introductory activity, we introduce students to the concept of robots and 

programming. Children participate in a whole-class activity in which they use the tangible 

blocks to “teach” a robot to dance the Hokey-Pokey. 

Experimenting with Programming: Students work in small groups to create and test several 

programs of their own design. At this point they combine simple command blocks (no sensors 

or control flow blocks yet) into sequences of actions that are acted out by the group’s robot. 

Robots can perform simple movements, make sounds, blink a light, and perform dance moves 

(such as shake or spin around). 

Simon Says: In this whole class activity, students pretend that they are robots and act out 

commands presented by the teacher. For example, the teacher holds up a card that says 

SHAKE, and the students all shake their bodies. The point of this activity is to help students, 

who may or may not be able to read, learn the various programming commands that are 

available to use. As this activity progresses, the teacher will begin to display two or more cards 

at the same time that the students will act out in order. This activity is repeated on several 

occasions throughout the unit. 

Hungry, Hungry Robot: In this challenge activity, we introduce the idea of loops as students 

work in small groups to program their robot to move from a starting line (a strip of tape on the 

floor of the classroom) to a finish line (marked with a picture of cookies). Children are 

prompted with the challenge: Your robot is very hungry. Can you program it to move from the 

start line to the cookies?  As this activity progresses, students quickly realize that the robot 
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needs to move forward several times in succession to reach its goal. Because they are only 

provided with a small number of blocks to move the robot forward, they learn to create 

programs that incorporate a simple counting loop. 

If you’re happy and you know it: The teacher reads a story in which different animals show 

that they are happy in different ways. Students are then asked to work in small groups to 

program a robot to act like one of the animals in the story. 

Bird in a Cage: In this whole class activity, the teacher tells a story about a bird that sings 

when it is released from a cage. The “bird” is a robot with a light sensor attached. When the 

bird is removed from a cardboard box (the cage), the increase in light intensity triggers it to 

sing. The teacher then introduces the concept of sensors and shows the class how to write the 

program that causes the bird to sing. This activity is repeated on two separate occasions, once 

as a whole-group activity, and once as a small group challenge activity. 

Final Projects: Students work in teams of two to design and build a robot animal that includes 

one motor and one sensor. Students are encouraged to create a story that involves their robot 

animal. This activity is open-ended and student projects are completed over a period of several 

days. 
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Research Questions 

The research presented in this chapter is guided by the following questions: given access 

to appropriate technologies and curriculum, are young children capable of learning how to 

program their own robotics projects? How much direct adult assistance do they need? Can young 

children understand the underlying powerful ideas behind computer programming?  Finally, 

should we revisit assumptions about what is developmentally appropriate for young children 

when designing curriculum—can we leverage new technologies to introduce more complex 

concepts? 

These ideas are not entirely new. Researchers at MIT’s Lifelong Kindergarten Group 

have suggested that with new digital manipulatives children are capable of exploring concepts 

that were previously considered too advanced, in part because of the ability of technology to 

bring abstract concepts to a concrete level (Resnick, Martin, Berg, Borovoy, Colella, Kramer, & 

Silverman, 1998). However, for the most part, this claim has not been empirically validated with 

children as young as five years old. And, as noted above, it can be difficult in this research to 

distinguish what young children truly understand and can do on their own, versus what was done 

by the supporting adults (Cejka et al., 2006). In the end, the functioning robotic projects tend to 

hide the challenges faced by children in the process of making them. 

Methodological Approach: Design-Based Research 

Design-based research (DBR) is an approach to studying novel tools and techniques for 

education in the context of real-life learning settings (Design Based Research Collective, 2003). 

As a methodology, DBR acknowledges the substantial limitations of conducting research in 

chaotic environments like classrooms; however, in exchange researchers hope that the resulting 
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designs will be effective and practical for future use in classrooms. DBR is based on an iterative 

process of design, evaluation, and testing. By collecting both qualitative and quantitative data in 

non-laboratory settings, design-based research has the additional goal of developing theories of 

learning that will inform future research.  

Study 

We have conducted a two-year design-based research study exploring the use of tangible 

programming technology in Kindergarten classrooms. Both the curriculum and the technology 

have evolved substantially as a result of each iteration. This research was conducted at two 

public schools in the greater-Boston area, one urban K-8 school and one suburban K-5 school. In 

all, we have worked with 56 children and six teachers. Data were collected through observation 

notes, photographs, and video tape. We also collected student work (both the programming code 

as well as the robotic artifacts) and conducted one-on-one interviews with children and teachers 

in the classroom. Our first intervention consisted of two sessions (four hours total), with 20 

students and two teachers at the urban school. Afterwards, we made substantial revisions to the 

technology (described in detail below) and expanded the curriculum. Our second intervention 

consisted of a eight-hour curriculum module in two classrooms at the suburban school with 36 

children and four teachers.  

Results 

In this study, we had two primary hypotheses. First, given access to appropriate 

technology, young children are capable of programming  their own robotics projects without 

direct adult assistance. In other words, through a combination of unstructured exploration, 

structured activities, and scaffolding, children will learn how to build and program indendently. 
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Second, children are able to understand the underlying powerful ideas of computer programming 

and robotics through the curriculum.  

Based on observation notes and an analysis of video tape, we found that children were 

able to easily manipulate the tangible blocks to form their own programs. And, for the most part, 

students were also able to differentiate the blocks and discern their meanings. Not all of the 

children could read the text labels on the blocks, although we saw evidence that children who 

could not read the blocks were able to use the icons as a way to interpret meaning. For example, 

in the initial sessions, we asked children to look at the blocks and describe what they saw. Some 

children were simply able to read the text labels on the blocks. Other children said things like: 

“mine says arrow” or “mine says music.” In reality the text on the blocks reads “Forward” and 

“Sing.” We used the Simon Says activity to reinforce the meaning of each block in terms of the 

robot’s actions.  

The children also seemed to understand that the blocks were to be connected in a 

sequence and interpreted from left to right. For example, one student in the introductory session 

pointed out, “they connect; some have these [pegs] and some have these [holes].” Another 

student added, “the End block doesn’t have one [peg],” with another classmate adding, “the Start 

block doesn’t have a hole.” The blocks were designed using physical form factor to enforce 

language syntax. The students noticed that blocks could not be inserted into a program before the 

Start block or after the End block. During the second session, researchers asked individual 

children to describe their programs. One girl explained, “my program is: Begin then Beep then 

Forward then Sing then End.” Here she was reading the text labels on the blocks in her program 

from left to right, resting her finger on each block in turn. The use of the word then suggests that 
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she might have understood not only the implied left-to-right ordering of the blocks but also the 

temporal step-by-step sequence in which the blocks would be executed. Understanding the idea 

of sequencing is powerful, not only in the domain of computer programming but for most 

analytical activities that children would encounter in schooling as well as life. 

In the second intervention round, we moved beyond programs consisting of simple 

sequences of actions and introduced more advanced constructs including loops, sensors, and 

numeric parameter values. Through these activities we found evidence that children could 

engage these concepts, reasoning about possible outcomes of different blocks and forming and 

testing solutions to challenge activities. For example, in our Hungry, hungry robot activity, we 

prompted teams of four students with this challenge: Your robot is hungry. Can you program it 

to drive to the cookies? We had placed the robot on a starting line, represented with a strip of 

tape on the floor. The cookies were represented with a picture taped on the wall approximately 

two meters from the starting line. Groups were provided with a small collection of blocks, 

including two Forwards, a Repeat, an End Repeat, and a number parameter block. The number 

parameter block was labeled with the numbers two through five, with one number on each face 

of the cube. This number block could be included in a program after a Repeat block to specify 

how many times a robot should repeat a sequence of actions. Each Forward block would cause 

the robot to drive forward approximately one half meter. So, for example, one solution to the 

challenge would be the following program: 

Begin -> Repeat (4) -> Forward -> End Repeat -> End 

Many other possible solutions exist, and students could add creative elements to their 

programs. For example, one group included a Sing block to indicate that the robot was eating its 
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cookies after it arrived at the wall. Many groups started this challenge by creating programs that 

consisted of all the blocks provided to them arranged in a seemingly random order. However, 

after testing these programs, the groups quickly decided that the Forward block was necessary to 

drive the robot towards its goal. After one or two additional trials, groups discovered that they 

didn’t have enough Forward blocks to drive the robot all the way from the starting line to the 

wall. Here, often with prompting in the form of leading questions from a teacher, the groups 

began to experiment with the Repeat blocks, creating programs that incorporated the Forward 

blocks inside of a loop.  

Later in the unit, we introduced students to the idea of sensors through the Bird in the 

cage activity. Here the cage was a cardboard box, and the bird was a robot with a light sensor 

attached. The lead teacher told a story of a bird who liked to sing when released from her cage. 

We used this program to have the robot act out the story.  

 Begin -> Repeat(forever) -> Wait for Light -> Sing -> End Repeat -> End 

The students were curious how the robot was able to sing when it was removed from the 

cage. The teacher used this curiosity to prompt students to explore the idea of sensors and to 

develop hypotheses about how the robot is able to sing when it emerges from the box. Finally, 

the teacher demonstrated how she had created the program that controls the robot:  

Teacher:  Do you recognize all of the blocks? 

Student 1: No. The moon one.  [Wait for Dark] 

Student 2: The sun and moon [Wait for Light] 

Teacher: Can one of you read this? 
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Student 2: Wait for light 

Student 1: It means you’re going to wait for the dark to come. 

Teacher: What are these? 

Students together: Repeat 

Teacher: What do they do? 

Student 3: Start all over again. 

Teacher: The bird is outside. 

Student 2: The witch catches the bird 

Student 1: If we turn this block over we could make him sing when it’s dark outside. 

It might be shy so he sings in the dark. 

Here the child was pointing out that it would be possible to use a Wait for Dark block 

instead of a Wait for Light to achieve the opposite effect, a bird that sings only when it is inside 

the cage.  

For the remainder of the curriculum unit, the children worked in pairs to create robotic 

creatures that ideally incorporated one moving part and one sensor. The children struggled with 

many aspects of this activity and required substantial help from the teachers. The lead teacher 

described her interactions with one group: 

I worked with M. and N. for the majority of the time.  They struggled with understanding 

that the RCX [LEGO computer] was what would power the robot.  M. spent most of the time 

searching for materials, and I sat with N. trying to understand her plan for their robot (a parrot 

that snaps it's beak).  She had an egg carton, and was decorating it with stickers.  When I asked 
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her where the beak was, she pointed to the egg carton. When I asked her how it would move, she 

picked up two large pompoms and said that the motors (the pompoms) would make it move. N. 

had little interest in the RCX and how it worked.  When pressed, she said that the buttons and the 

wires would make the beak move… 

We believe that these problems were due to our curriculum, which did not include 

enough time for children to explore the RCX brick and understand how a computer (although 

small) can be connected to a physical construction and how that construction needs to have 

moving parts that could be controlled by the computer. 

As part of the final project presentations we asked students not only to demonstrate their 

robots, but also to show the class the blocks they used to program it. In many cases, students 

selected blocks that had little to do with their actual programs. We believe that in the current 

version of the curriculum, students were not given enough time to experiment with programming 

on their own, either individually or in small groups. In many cases, the programs were loaded 

quickly by the teacher in order to finish projects in time for the final presentations. This might 

explain some of the difficulty students had recreating their programs during the final project 

presentations. 

In other cases, however, students were able to recreate programs more accurately. For 

example, in this transcription, two girls described their toucan robot during the final project 

presentation: 

Teacher:  So what does it do? 

Student 1:  We have to make the program first 

Student 1:  [Starts connecting blocks] Begin. Wait for Dark…  
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Teacher: Can you tell us what we’re doing while you’re doing it? 

Student 2: Yes. I think we should use a repeat block 

Student 1: Great idea 

Teacher: [Student 2], why don’t you show us your robot while [Student 1] builds 

the program. 

Student 2: This is our robot… [she starts to demonstrate how it works] 

Student 1: The program isn’t done yet! 

Student 2: [Looking at the blocks] It’s supposed to repeat the shake 

Student 1: Yes. It’s going to repeat the shake over and over again. 

[The program student 1 has created is: Begin -> Wait for Dark -> Beep -> Turn Left -> 

Repeat -> Shake -> End] 

Student 2: [Runs the program on the robot for the class to see. The actual program 

waits for dark, turns, beeps, and then shakes once.] 

Student 1: These are the three blocks we used [She puts these blocks in the middle of 

the rug: Begin, Wait For Dark, Beep] 

Here it is clear that there is some confusion on the part of the students about the concept 

of a program being stored on the RCX robot. However, the blocks the students chose to explain 

their robot are consistent with the program that they had actually loaded on the robot earlier in 

the day. Moreover, they seemed to understand the notion of repeating an action.  

Technology Evolution 

The technology used in this project, including both the software and the tangible 

programming blocks, has evolved substantially as a result of our iterative testing with children. 
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For our first intervention, we used wooden blocks shaped like interlocking jigsaw puzzles (see 

Figure 3). These blocks had several drawbacks that became obvious to us when we observed 

children using them in classrooms. First, the blocks are only big enough to allow space for a 

computer vision fiducial (the circular black and white symbols) and a small amount of text. This 

is problematic for children who are still learning to read. As we discovered with our current 

prototype, children rely heavily on icons as well as text to interpret a particular block’s meaning.  

 

Figure 3. In our first round of evaluation in classrooms we used 

wooden blocks shaped like jigsaw puzzle pieces.  

Second, although children have little difficultly chaining these jigsaw puzzle blocks 

together to form programs, the blocks tend to fall apart when children try to carry their programs 

around the classroom. Unfortunately, children need to be able to carry their programs to a 

specific location in the classroom (the computer with the web camera attached) in order to 

download their programs to the robot. Finally, these blocks are designed to lie flat on a table 

surface. As a result, in order for the computer vision system to function properly, we had to 

suspend the web camera above the table pointing down. This relatively elaborate setup limits the 

system’s portability, increases the teacher’s preparation time, and limits the number of stations 

that can be set up in the classroom for children to use.  
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To address these problems, we redesigned the blocks using wooden cubes with 

interlocking pegs and holes instead of jigsaw puzzle tiles. These cubes provide a slightly larger 

surface area on which to include both text and an icon in addition to the computer vision fiducial 

(see Figure 1). Furthermore, because the cubes interlock, they are easier for children to carry 

around the classroom. Finally, because we place a computer vision fiducial on every available 

face of the cube, we are able to take pictures of programs from the side rather than from above. 

This allows us to simply place the web camera on a table rather than suspending it above.  

As expected, the prototype based on wooden cubes was much easier for students to use. 

However, for our next round of evaluation, we plan to make several additional improvements, 

including creating slightly smaller and lighter cubes and exploring better ways to represent the 

syntax of flow-of-control structures such as loops, parameters, and branches. Children also 

struggle with the mechanics of downloading their program to a robot. This process involves 

several discrete steps: 1) turning the robot on; 2) placing the robot in front of an infrared 

transmitter; 3) placing their program in front of the web camera; 4) pressing the space bar on the 

computer; and 5) waiting several seconds for their code to download to the robot. From our 

experience, this process is still too complicated to be practical for young children.  It’s easy to 

forget a step, and there are multiple points of possible failure.  For example, a child might do 

everything right but have the robot pointing in the wrong direction. Or, a child might 

accidentally cover up one of the computer vision fiducials while the computer is taking a picture 

of the program. In these cases, it is difficult for children to diagnose and fix the problem without 

the help of an adult. We are investigating a number of potential improvements to this system to 

simplify the process and reduce the amount of adult assistance necessary.  
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Conclusion 

We face a challenging time in early childhood education. On the one hand, there are 

stepped up federally-mandated academic demands and a growing concern to respect children’s 

developmental stages. On the other hand, there has not been yet a profound re-thinking of what 

young children can learn in terms of technology, nor do we have research-based evidence to 

evaluate children’s developmental capabilities with innovative technologies. The emphasis on 

developmentally appropriate practice and the lack of adequate technologies have severely limited 

our approach to early childhood education. Our work brings together contributions to the fields 

of child development, early childhood education, and human-computer interaction. The 

overarching goal is to provide an empirical foundation for the development of future curriculum 

and technology for use in early childhood education. The project also proposes to take an 

unprecedented look at what young children can accomplish with technology when given tools 

that are truly age-appropriate, and what kind of powerful ideas they are able to learn when 

programming robots. Furthermore, by conducting the evaluation in the context of a curriculum 

that introduces increasingly sophisticated concepts of computer programming, our work hopes to 

build a broad understanding for the scope of young children’s abilities to engage in computer 

programming and robotics activities that can inform educational reform in early childhood. 
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