

Programming in the Pond: A Tabletop
Computer Programming Exhibit

Abstract
We present the design of an interactive tabletop exhibit
intended to engage visitors in free-form computer
programming activities at the Computer History
Museum in Mountain View, California. We describe our
design goals and outline challenges associated with
creating this interactive experience for a free-choice
learning environment. We review results of testing
sessions with users from our target audience across
three successive prototypes.

Author Keywords
Computer programming; Computer science education;
Museums; Exhibit design; Multi-touch tabletops;
Computer supported collaborative learning; Graphical
programming languages

ACM Classification Keywords
D.1.7 [Visual Programming]. H.5.2. [Information
Interface And Presentation]: User Interfaces –
Interaction styles; K.3.2 [Computer and Information
Science Education]:Computer science education.

Introduction
Informal learning institutions such as museums and
science centers have a core mission to inspire interest
in learning by creating unique and memorable
experiences. With the increasing role of digital

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

CHI 2014, Apr 26 - May 01 2014, Toronto, ON, Canada
ACM 978-1-4503-2474-8/14/04.
http://dx.doi.org/10.1145/2559206.2581237

Michael S. Horn
Computer Science and
Learning Sciences
Northwestern University
2120 Campus Dr.
Evanston, IL 60208 USA
michael-horn@northwestern.edu

David Weintrop
Learning Sciences
Northwestern University
2120 Campus Dr.
Evanston, IL 60208 USA
dweintrop@u.northwestern.edu

Emily Routman
Computer History Museum
1401 N. Shoreline Blvd.
Mountain View, CA 94043 USA
Current Address:
Emily Routman Associates
182 Hillcrest Rd.
San Carlos, CA 94070 USA
eoroutman@sbcglobal.net

technology in everyday life, it is not surprising that
many exhibits and even entire museums are now
dedicated to exploring the role of computers and
technology in society. The Computer History Museum
(computerhistory.org) in Mountain View, California is
one such institution. Working with the Museum, we are
designing an interactive tabletop environment called
Frog Pond (Figure 1, 2) that will be part of a larger
exhibit called Make Software, Change the World. The
goal of Frog Pond is to engage visitors in free-form
computer programming activities. In this paper we
present our design goals and discuss challenges
inherent in creating interactive experiences for free-
choice learning environments, especially around
potentially confusing topics like computer
programming. To date we have developed and tested
three iterative prototypes with users. We present
results from these formative testing sessions and show
how they informed our design.

Design Goals and Challenges
Our design process is guided by several high-level
goals. The first is to provide an engaging and fun
experience with computer programming for visitors
from a variety of backgrounds and experience levels.
Central to this goal is that visitors should be able to
create simple programs that nonetheless result in
interesting and complex outcomes. To accomplish this
goal, we were inspired by the NetLogo programming
language [8]. NetLogo is an agent-based modeling
environment in which simple programs describing the
behaviors of computational agents can simulate a wide

variety complex and emergent phenomena [9]. From
NetLogo we adopt the conventions that programs
describe the actions of simple computational agents
(turtles in the case of NetLogo); that there can be
many such computational agents on the screen at any
time; and that the interactions among agents can result
in complex patterns.

Second, the exhibit should facilitate immediate
apprehendablity [1], meaning that it should be intuitive
and easy for people to learn how to use even if they
have never programmed before. Here we build on our
prior experiences creating a robotics and programming
exhibit called Robot Park for the Museum of Science,
Boston [4]. While this exhibit was easy to learn, visitor
programs could only result in simple, uncomplicated
behaviors (low-floor, low ceiling). With Frog Pond we
hope to improve this aspect of the experience.

Third, the exhibit should support active prolonged
engagement (APE) [5]. This implies a number of
important sub-goals. It should be socially scalable [7],
meaning that it should accommodate simultaneous
interaction from as many people as can gather around
the table and that the experience should become richer
as a result. It should also allow for meaningful
experiences through different social configurations such
as cooperative (side-by-side programming),
competitive (head-to-head programming), and parallel
but independent engagement. And, even though the
exhibit does not enforce a specific activity or sequence
of activities, it should nevertheless provide cues that

Figure 3. Frog Pond's programming panel. This panel controls the green, polka dot frogs.

Figure 1. The Frog Pond exhibit.

Figure 2. Two children
interacting with Frog Pond.

subtly guide users towards interesting experiences.

A final design goal for our exhibit is that it should be
consistent with the overall mission of the Computer
History Museum and the goals of the Make Software,
Change the World exhibit. This means that it should be
clear to visitors using Frog Pond that what they are
doing is computer programming, and the experience
should encourage exploration of programming in other
contexts. The target audience is the general public
(with no technical expertise), ages 11 to adult. The
interactives are intended to be usable by younger
visitors as well with adult facilitation. This is a
departure from the Museum’s current exhibitions, which
are aimed at visitors of high school age and above.

Frog Pond
Frog Pond presents visitors with a large pond filled with
lily pads and brightly colored frogs. Insects buzz around
the pond and eventually settle on the lily pads. A faint
grid shows paths along which frogs can move without
falling in the water. Visitors construct programs using a
graphical language to specify the behaviors of their
frogs (Figure 9, 10, 11). The interface design is inspired
by programming environments such as Scratch [6] and
Alice [2]. Frog Pond has two programming panels
(Figure 3), one at either end of the table, each of which
controls one color of frog. The language includes
movement commands (such as hop and spin) as well as
conventional control structures (conditional statements
and loops). Visitors can also hatch new frogs, making it
possible for a program consisting of only a few blocks
to fill the table with hopping and chirping frogs. We
developed the exhibit using the Dart language running
in a web browser on an Ideum Platform 46 tabletop.

Designing Frog Pond
Over the past year, we developed three major
iterations of Frog Pond. Each version was tested with
users from our target audience.

Iteration 1
Our first prototype (Figure 4) used a graphical
programming environment called Blockly [3]. It
separated the programming interface (displayed on
laptops) from the pond itself (displayed on a larger
monitor). This iteration included two challenges. One
was to keep the frogs from falling into the water at the
edges of the screen. The second was to have frogs
communicate with one another by chirping, thus
allowing for games like follow the leader. We also
included the ability for users to customize the
appearance of their frogs. Our initial round of user
testing involved 12 children (9 boys, 3 girls) ages 8-14
as part of Take your Daughters and Sons to Work Day.

While the participants responded positively, there were
a number of design issues identified. First, there was
confusion about the goals of the environment. In post-
interviews, children suggested adding challenges, such
as the ability to eat the flies or to make an obstacle
course. Second, users had difficulty understanding the
link between their programs and the movement of the
frogs. This round of testing also revealed a number of
limitations of the programming language to support
short-term interaction with inexperienced users. For
example, a common first program was to include every
primitive once in a list (Figure 5). Second, despite the
interlocking shape of the blocks, it was not immediately
apparent to the children how to construct programs.
Some children placed the blocks left-to-right, like
composing a sentence.

Figure 4. Iteration 1: the laptop
setup and programming interface

Figure 5. A common program.

Iteration 2
Our second iteration of Frog Pond (Figure 6) included a
number of improvements. In this version, programs
were constructed in the pond itself, as opposed to on a
separate screen. Composing a program involved
dragging commands from a programming panel into a
chain of commands bookended by start and stop
commands. We also displayed the name of the
commands in text below the frogs as they moved
around the screen (Figure 11). These two changes were
designed to help users link their composed programs
with the observed frog behaviors. We replaced the
Blockly language with a new, left-to-right arrangement
(Figure 7), leveraging the sentence building we
observed in our first series of tests. To suggest possible
activities we included four brightly colored gems in the
pond. If a frog landed on a gem, it was added to the
user’s task bar (Figure 8). We included more water on
the screen with lily pad shapes to make navigation
more difficult. Finally, we decided to remove the ability
to customize frogs’ appearances as it distracted from
the central programming activity.

Our second round of user testing took place during a
single day at a museum in Chicago. Approximately 30
visitors interacted with the exhibit while we observed
from a distance. About half of these visitors were in the
age range of 9-15 years old; the rest were younger
children and adults. Two major design issues emerged.
The first stemmed from a combination of the touch
interface and the new format of the programming
blocks. Many visitors seemed to think that the round
blocks were buttons that should respond to simple taps.
Second, visitors seemed to expect that you could
directly interact with the frogs and the gems by
touching them. Several visitor groups gave up on the

exhibit before discovering the programming interface
because they assumed the table was not responsive.
This is especially problematic given the short
interaction time typical of museum exhibits. There were
also some design successes with the second iteration of
Frog Pond. The introduction of the gems achieved its
intended goal as a few of the visitor groups engaged in
races to collect gems. In one case, there were six
people gathered around the table in a very intense race
to collect all four gems before the other team. It was
clear that the race was motivating, but the competitive,
nature of the activity meant that visitors weren’t really
reflecting much on their programs. One group simply
hit the play button over and over again, while the other
group had a loop that kept hatching more and more
frogs that eventually covered much of the screen.

Iteration 3
The third iteration of Frog Pond included further
revisions to the interface based both on our
observations as well as requests from other
stakeholders in the project. This included another
redesign of the programming interface, reintroducing
some of the characteristics of Iteration 1 while retaining
successful features of Iteration 2. First, we reintroduced
a Blocky-like design with interlocking blocks that stack
vertically, with some modifications for ease of use. This
design had the advantages of being consistent with
related experiences being planned for the Museum and
a stronger relationship to text-based programming. We
also added several features to improve the learnability
of the programming language for novice users. First,
when a user touches a block in the panel, an arrow
appears to indicate that the block should be dragged
onto the screen (Figure 9). The program bracket also
rearranges itself to make room for the new block

Figure 6. Iteration 2.

Figure 7. A sample program
from Iteration 2.

showing where it could be placed (Figure 10). If the
user only taps on a block as if it were a button, it
automatically flies into the existing program.

We also introduced a hexagonal grid over the lily pads
to show exactly where the frogs can move, providing
an easier way to gauge distances and to encourage
more thoughtful programming. In an effort to be more
consistent with our pond theme, we replaced the gem-
collecting task with the challenge of eating brightly
colored beetles that settle onto intersections on the
grid. Other minor tweaks were made to address earlier
problems. For example, to help visitors link the
commands with the frog behaviors we added an arrow
tracing the flow of control of the program as it runs,
(Figure 11). We tested the latest version of Frog Pond
with 28 children ages 11 to 14 as part of a weekend
activity at the Computer History Museum.

We divided the kids into groups of three or four and
gave each group roughly ten minutes to interact with
Frog Pond. No instructions were provided. At the
conclusion of their time, each group was asked a series
of follow-up questions. All of the groups were engaged
for the full 10 minutes without losing interest. Within
the first minute of play, every group was able to create
and run a program with more than one command. It
took most groups at least a minute to understand the
goal was to catch bugs and to figure out how to do so,
but all groups were able to catch multiple bugs within
the 10-minute period. The least successful group
worked for almost five minutes before catching their
first bug. Players raised a few questions over the
course of play, including “Are there any more
commands?” and “How can you get rid of the extra
frogs?” Both of these questions are encouraging as they

suggest that the children were engaged with the
programming activity. In follow-up interviews, all
groups enthusiastically responded that the game was
fun. Some players did offer qualifiers, saying it was fun
but confusing, or that they wished the game was a little
easier. Two students commented that the environment
was educational because you learned how to put
together commands and that it really showed how
programming worked. Two suggestions were made by
at least one member of every group: provide
instructions on how to play, and add a scoreboard,
awarding points for eating bugs. Several students
suggested having a time limit because otherwise “no
one will want to stop.” Following this advice, we are
currently in the process of designing and implementing
a help system and scoring function, and will evaluate
the need for a time limitation.

We conducted an additional round of testing with
general visitors at the Computer History Museum.
Approximately 20 groups of 1 to 4 visitors used Frog
Pond during 1.5 hour period of observation. As visitors
began to interact with the program we offered the
option of a tutorial (as a means to simulate a help
feature that we are in the process of designing).
Visitors who requested assistance were provided with
three instructions: the goal of the program, how to add
or remove commands, and how to reset their frog to
the starting position. Visitors who used Frog Pond
included: adults alone or in pairs, children alone or in
pairs, and one to two adults with one or two children.
Duration of play ranged from 20 seconds to 12
minutes. One child, approximately 10 years old,
returned four times for a total of 9 minutes of game
play, and one adult played for 12 minutes before being
asked to free up the table for others.

Figure 8. The fly and gem
collecting portion of the
programming panel.

Figure 9. The visual
feedback when a
user puts her finger
on a block

Verbal instructions resulted in players being able to
immediately begin programming and to target their
efforts toward the goal of catching bugs. Visitors who
stayed longer created increasingly complicated
programs, showing evidence of growing skills and
confidence. Two children estimated to be 7 and 8 years
of age respectively tried the program without adult
assistance. They created programs successfully but
were unable to catch bugs. All other visitors created
successful programs.

Conclusion and Future Work
Our overarching goal for Frog Pond is to create an
engaging, interactive programming exhibit for museum
visitors. Through iterations of design and testing we are
gaining confidence that we have met our stated goals.
We have seen young children write programs with only
a few commands that fill the screen with hopping,
chirping, and spinning frogs. Frog Pond appears to be
immediately apprehendable as visitors were quickly
able to engage with the activity and create programs.
Visitors who did not immediately understand the goal of
the exhibit only required three brief verbal instructions
as guidance. We also saw groups play with Frog Pond
for 10 full minutes, which is well beyond the average
exhibit visit [5]. In our most recent round of
observations, we saw Frog Pond support a variety of
visitor arrangements, suggesting the exhibit is socially
scalable. Finally, in post interviews, students said they
found the exhibit both fun and informative. While these
findings are encouraging, they remain preliminary, a
fact we will address in future work. The next step is to
finalize the design of Frog Pond. This includes adding
help and scoring features as well as a “show code”
feature to further bridge Frog Pond to other text-based
programming visitors will encounter throughout the

exhibit. We will collect additional naturalistic user
observations on-site at the Museum. In the summer of
2014, we will conduct a formal study to document
interaction patterns and evaluate learning outcomes.
Frog Pond will open to the public in the winter of 2015.

References
[1] Allen, S. Designs for learning: Studying science
museum exhibits that do more than entertain, Sci.
Educ., 88(S1), S17–S33, 2004.

[2] Conway, M., Audia, S., Burnette, T., et al., “Alice:
lessons learned from building a 3D system for novices,”
in ProcCHI '00, 2000, pp. 486–493.

[3] Fraser, N. Blockly.
https://code.google.com/p/blockly: Google, 2013.

[4] Horn, M.S., Solovey, E.T., Crouser, R.J., and Jacob,
R.J. Comparing the use of tangible and graphical
programming languages for informal science education.
In CHI '09, 975–984.

[5] Humphrey, T. and Gutwill, J. Fostering Active
Prolonged Engagement. San Francisco, CA: The
Exploratorium, 2005.

[6] Resnick, M., Silverman, B., Kafai, Y., et al.,
Scratch: Programming for all, Commun. ACM, 52, 11,
2009.

[7] Snibbe, S.S. and Raffle, H.S. Social immersive
media: pursuing best practices for multi-user
interactive camera/projector exhibits. In CHI’09, 2009,
1447–1456.

[8] Wilensky, U. NetLogo. Evanston, IL: Center for
Connected Learning and Computer-Based Modeling,
Northwestern University.
http://ccl.northwestern.edu/netlogo, 1999.

[9] Wilensky, U. and Resnick, M. Thinking in levels: A
dynamic systems approach to making sense of the
world. Science Education and Technology, 8(1), 1999.

Figure 11. A frog
programming running.

Figure 10. Visual cues to help
visitors construct programs.

