

FlowBlocks: A Multi-Touch UI for Crowd Interaction

Florian Block
1
, Daniel Wigdor

2
, Brenda Caldwell Phillips

1
, Michael S. Horn

3
, Chia Shen

1

1Harvard University, 2University of Toronto, 3Northwestern University
1{fblock | cshen | phillips}@seas.harvard.edu, 2dwigdor@dgp.toronto.edu,

3michael-horn@northwestern.edu

ABSTRACT

Multi-touch technology lends itself to collaborative crowd
interaction (CI). However, common tap-operated widgets
are impractical for CI, since they are susceptible to
accidental touches and interference from other users. We
present a novel multi-touch interface called FlowBlocks in
which every UI action is invoked through a small sequence
of user actions: dragging parametric UI-Blocks, and
dropping them over operational UI-Docks. The FlowBlocks
approach is advantageous for CI because it a) makes
accidental touches inconsequential; and b) introduces
design parameters for mutual awareness, concurrent input,
and conflict management. FlowBlocks was successfully
used on the floor of a busy natural history museum. We
present the complete design space and describe a year-long
iterative design and evaluation process which employed the
Rapid Iterative Test and Evaluation (RITE) method in a
museum setting.

Author Keywords

Crowd Interaction, Multi-Touch UI, Drag & Drop.

ACM Classification Keywords

H5.m. Information interfaces and presentation: User
Interfaces. – Graphical User Interfaces.

General Terms

Design, Human Factors.

INTRODUCTION

Interactive tabletops and multi-touch surfaces are a growing
area of human-computer interaction research, and recent
studies have focused on the use of such devices in real
world contexts including museums, galleries, and urban
spaces. Indeed, informal learning environments such as
museums have emerged as one area in which multi-touch
interfaces can be meaningfully applied [15, 16, 17, 30]. The
high-bandwidth input capabilities coupled with an inviting
form factor seem ideal to facilitate the degree of social
learning that is desirable in a museum context Such

examinations have discovered that this context creates
unique circumstances, that we call crowd interaction (CI)
[15, 16, 17, 19, 23, 29, 30]. When designing user interfaces
for crowds, one has to deal with the known “chaos” that
arises when groups of strangers from various age groups
and backgrounds spontaneously come together to
“collaborate” (cf. Fig. 1): accidental touches are frequent
[17, 36]; parallel interaction is the norm [17, 23, 29, 36];
levels of interference are high [16, 27, 29]; conflicts
between participants commonly arise [16, 23, 29]; and
mutual awareness amongst users regarding each other’s
actions and intentions cannot be considered a given [23,
29]. Additionally, UI standards for crowd interaction do not
yet exist [40] and users approach gestural interfaces in a
variety of different – and often conflicting – ways [16, 17,
42]. At the same time, average dwell times are low (around
four minutes for a successful exhibit), making it hard to
accommodate the significant training associated with
teaching gestures to novice users [5, 6, 8, 11]. Overall,
bringing order to the “chaos”, while providing a UI that
everyone can almost instantly use, is a significant challenge
that every interface designer targeting crowd interaction
must overcome.

Standard multi-touch UIs (such as the Microsoft Surface
SDK [1]) provide a set of conventional widgets adapted for
touch, that can be easy to learn (as they facilitate the
transfer of desktop idioms, e.g. “click” � “tap”) [42], and
also scalable by providing functional coverage for most
application scenarios. However, widgets that rely on
tapping graphical elements on the tabletop do not perform
well in chaotic crowd interaction circumstances, as they are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’12, October 7-10, 2012, Cambridge, MA, USA.
Copyright © 2012 ACM 978-1-xxxx-xxxx-x/xx/xx... $10.00.

Figure 1. Chaos in a museum (frame from a video).

highly susceptible to interference from accidental and
uncoordinated touches [17, 23, 36]. An alternative way of
circumventing these issues is to design “UI-less” multi-
touch applications, such as the “media-sharing”-type of
application that primarily relies on the basic manipulation
of graphical objects (drag/resize/rotate) [3, 4, 16, 17, 22,
29], or interaction with physical phenomena that inherently
lend themselves for multi-point interaction [33, 41]. These
types of applications may cope well with the chaos, but the
need for scalability limits the degree to which simple
physics-based approaches can be effective [42]. This
motivated our efforts to go beyond “UI-less” multi-touch
applications, and to push towards a fully functional UI that
enables a wide spectrum of interaction semantics, while
being tailored to the requirements of crowd interaction.

In this paper, we propose FlowBlocks, a novel multi-user,
multi-touch interface that relies on drag & drop as the
primary input primitive. Every action is triggered by
dragging a Block and dropping it over a Dock (see Fig. 2).
To successfully execute a function, a user has to first pick
up the Block, drag it across a certain trajectory – signaling

intent to act to other users – and drop it over the target
Dock to execute the intended action.

Promoting Drag & Drop to the primary means of
performing all system functions provides inherent
advantages in the context of crowd interaction. First, it is
less prone to being activated by accidental or uncoordinated
touches (or “fiddling” which occurs frequently with
children around a multi-touch surface), particularly when
the start and end points of the drag & drop are farther apart
and when other trajectory-related constraints apply.
FlowBlocks provides several design parameters that a
designer can use to “fortify” their UI. Secondly, tapping
and holding are freed to act as initiators for feedforward
mechanisms that instruct novice users on how to use the
application and its UI. Thirdly, as we will demonstrate, drag
& drop interaction with UI widgets introduce several design
parameters that can help promote mutual awareness and
conflict management between users. We have developed
FlowBlocks, and established its core qualities, during a
year-long process of Rapid Iterative Testing and Evaluation
(RITE [24]) in one of our partner museums.

The contribution of this paper is threefold: after discussing
related work, we present the FlowBlocks design space,
providing details about our core principles, components,
and design parameters. We then illustrate how common UI
controls can be realized or replaced using FlowBlocks

widgets, demonstrating functional coverage for the full
range of application scenarios. Finally, we present the
evaluation used to yield the current design of FlowBlocks,
conducted while they were in use in a deployed application
in one of our partner museums, and discuss our findings.

RELATED WORK

Of particular relevance to FlowBlocks is work that
addresses multi-user interaction conflict management and
mutual awareness, identifies problems with tap-based
actions, or provides motivation for drag & drop as input
primitive. Additionally, we discuss research that extends
existing multi-touch UIs, UIs based on new input
primitives, and tangible UIs.

Conflict Management and Mutual Awareness

A series of studies have pointed out that a variety of
conflicts that commonly arise in multi-user use of
interactive surfaces [7, 22, 25, 26, 29, 32, 36]. This includes
conflicts through the sudden occlusion of screen real-estate
or unexpected changes to the state of application [7, 29,
32], conflicts caused by accidental touch [36], or power
struggles [22, 29]. Several approaches have been presented
to address this issue: reducing conflicts through creating
mutual awareness [7, 25]; negotiating UI access based on
user identity [26, 31]; and enabling physical negotiation
techniques [18, 22, 28].

FlowBlocks provides means of addressing conflict through
awareness and physical negotiation: similar to the sketching
gestures presented by [7]. Drag & drop provides a certain
precursor to an action, particularly when performed across
shared space. This approach builds on the Privileged Object
policy [25], which suggests moving actions affecting all
users to a shared space. Similar to physical objects,
dragable graphical objects afford ways to utilize
territoriality and negotiating for access (rather than fighting
after the fact), commonly observed as natural behaviors
when children interact in groups [18, 22, 28].

Morris et al. propose that social protocols are insufficient
for facilitating sharing in some use scenarios, and describe a
series of policies that can enforce “good behavior” among
users [25]. With FlowBlocks, we follow a fundamentally
different philosophy: we believe that social protocols are
not inherently insufficient, but rather that UI’s based on
point-and-click provide insufficient cues to facilitate mutual
awareness and thus underserve the needs of social protocols.

Problems with Tap-Based Actions

Existing multi-touch UIs, such as Microsoft’s Surface SDK
and Apple’s iOS, adapt conventional UI widgets (such as
buttons, drop down lists or radio buttons) to touch input,
utilizing finger-tapping as the equivalent to clicking in the
WIMP GUIs. While this allows a transfer of knowledge
between traditional UIs and novel multi-touch systems, the
lack of a hover state in touch devices eliminates helpful
feedforward and feedback mechanisms [11, 40]. Further,
studies observing crowd interaction report that erroneous

Figure 2. FlowBlocks basic principle: every action is
executed by picking up a Block, dragging it along a

certain trajectory, and dropping it over a Dock.

touches lead to the frequent occurrence of false-positive
invocation of actions, causing misinterpretation of UI
behavior [36], and general confusion [17]. While erroneous
touches can be accidental, in many cases they are
intentional – caused by users who either don’t realize or
don’t care that their actions will interfere with others. While
certain mechanisms can be applied to reduce the negative
effect of unintended or unnoticed touches – timeouts to
prevent repeated activation [17] and confirmation dialogs
[23] – these mechanisms can themselves lead to
unresponsiveness, confusion [17], and tension between
users [23]. Based on our own experiences in building museum
exhibits, we concur with these findings, and consider
standard multi-touch UIs unsuitable for crowd interaction.

Drag & Drop

Dragging is one of the most common modalities observed
when users spontaneously approach tabletop UIs [16, 42].
Evidence for the success of dragging as an input modality is
also provided by a series of “picture-sharing” type of
tabletop applications, in which dragging responds well to
interference and accidental touches [3, 16, 18, 22, 29]. For
example, the “Futura” tabletop game [4] allows users can
drag strategic resource tokens from a toolbar (situated at the
four sides of the table) and drop them over an environment
simulation in board-game like fashion (causing an effect in
the outcome of an application). The authors reported that
drag & drop worked well despite intense collaboration, and
that users quickly learned how to place game tokens.
Overall, dragging seems to be an input primitive that can be
easily learned and performed by a variety of different users.
This motivated us to promote dragging as the primary
interaction primitive to prepare the execution of an action.

Extending Existing UIs

There is a series of work that aims at extending aspects of
existing conventional UIs to multi-touch operation: the
DiamondSpin Toolkit [32] provides a series of novel UI
mechanisms to facilitate around-the-table interaction, such
as multi-threaded input event streams and concurrent
menus; Multi-touch Marking Menus aim to increase the
bandwidth of touch input [21]; Attribute Gates utilize
dragging trajectories across various graphical gates to adapt
the object’s attributes to different territories on the tabletop
[35]; and Grids & Guides [12] increase the precision of
multi-touch manipulations. FlowBlocks is designed for
crowd interaction, and thus has less emphasis on some of
these aspects, such as precision and throughput.

Graphical UI widgets that are operated through a drag-like
gesture have been proposed before, albeit for other devices,
motivated by different factors, and afforded with different
metaphors [5, 27]. Like FlowBlocks, CrossY [5] replaces
WIMP widgets with new UI controlled with a new input
primitive: crossing. This is done because crossing is more
efficiently and more accurately performed with a pen.
Similarly, Moscovich [27] presented a set of widgets

selected using sliding motions, aiming to reducing selection
ambiguity on high resolution screens in which UI widgets
are tightly packed. Gestures similar to “crossing” and
“sliding” can be described as sub-primitives of drag & drop
and have been incorporated into FlowBlocks.

Teaching Multi-Touch Gestures

One challenge for novel UIs is to be transparent to novice

users [4, 5]. Consequently, there has been a series of work

aimed at teaching touch and gesture-based input: to learn

Marking Menu style gestures [20], OctoPocus [6] provides

a dynamic guide that help users execute, learn, and

remember gesture sets; ShadowGuides [11] provides in-situ

guides that show a visualization of the user’s fingers

(feedback) alongside possible ways of continuing a gesture

(feedforward). OctoPocus and ShadowGuides require the

user to first understand the meaning of the visualizations

they provide, thus, the process of training itself requires

some degree of learning which is not practical in a CI

setting where a walk-up-and-use is essential. In contrast,

GesturePlay [8] provides an online learning system for

teaching gestures through game-like virtual-physical

widgets and positive reinforcement. Here, the mechanism

for teaching gestures utilizes physical puzzles that the user

can solve and in the process learn the execution of a

gesture. Just-in-Time Chrome provides UI tailored to evoke

various gestures [40]. It is also central to FlowBlocks to

provide similar inline mechanisms that can help visitors

quickly learn the operation of drag-based widgets. Elements

of OctoPocus and GesturePlay have been incorporated in

the design of FlowBlocks’ inline-feedback and

feedforward. ShadowGuide’s use of the ‘tap’ gesture to

invoke feedforward mechanisms has also been incorporated.

FLOWBLOCKS DESIGN SPACE

In FlowBlocks, the most elementary functional unit of

interaction – invoking a binary command – is triggered by a

compound action requiring the execution of two binary

actions and one continuous action: acquisition of a Block

(binary), dragging the Block over a Dock (continuous) and

releasing the Block (binary). FlowBlocks intentionally

separates the three components previously required for a

binary action. In this section we will show how this

separation can be beneficially used to address the challenges

of crowd interaction. Based on our analysis of related work,

we concentrated on designing FlowBlocks to meet these

three challenges:

1. Noise and interference: minimize the effect of

accidental touches and uncoordinated “fiddling”.

2. Mutual awareness and conflict management: increase

awareness between users regarding their intention and

actions, and provide tools for negotiating conflicts.

3. Learning how to interact: any user must be able to use

an interface almost instantly and without training.

The following subsections describe the mechanics relating

to each point at the conceptual level of FlowBlocks. In the

next section we will present practical guidelines for

applying FlowBlocks in practice.

Dealing with Noise and Uncoordinated Interference

Generally, FlowBlocks widgets are less susceptible to
accidental touches, because touches alone do not trigger an
action, but only cause feedforward to appear. However,
accidental touches could still coincide to form a sequence
that mimics a drag operation, potentially triggering an
unintended action. For this to happen, an accidental touch
would have to start over the position of a Block, move
across a certain trajectory, and drop the Block over the
corresponding Dock. While we found this to very rarely
happen in practical use, FlowBlocks provides three
parameters that can further reduce the likelihood, which we
will review in turn: increasing the distance between Block
and Dock, requiring Dock activation, and constraining the
trajectory of the drag component. These methods are not
only a means of counteracting accidental touches, but can
also be used to reduce the effect of uncoordinated “fiddling”,
which is especially prevalent among younger children.

Constraining trajectory. Figure 3 provides several
examples for trajectory constraints: a) constraining
movement to a path, b) using virtual barriers through which
Blocks cannot pass, and c) & d) requiring certain speed of
drag to allow a Block to reach the Dock. These constraints
require more coordination and intent from a user in order to
successfully complete an action, which reduces the action’s
susceptibility to noise and uncoordinated touches.

Dock activation. Docks can be configured to require
explicit activation before Blocks can be dropped over their
active area, which adds another layer of intent and
coordination that is required to execute an action:

• Tap-to-activate: tapping a dock “opens” it for a certain
time window.

• Hold-to-activate: the dock is receptive to a Block for
as long as a touch is held in its active area.

While the presented mechanisms of constraining
trajectories and dock activation counteract the effect of
accidental and uncoordinated touches, they are also useful
in the context of mutual awareness and conflict
management amongst users. Several other mechanisms of
FlowBlocks also help to address this design challenge.

Mutual Awareness and Conflict Management

Mutual awareness is key factor in the fluidity and
naturalness of collaboration, and in allowing social
protocols to facilitate interaction [13]. By being aware of
other’s intentions and actions, conflicts can be detected and
negotiated [7, 25]. FlowBlocks’ core primitive – drag &
drop – consciously separates the intent to interact –
selecting a Block and dragging it towards a Dock – from
executing the intended action – dropping the Block over the
dock (cf. Fig.3). This gives users the chance to become

aware of an incoming action, decide if it conflicts with their
interests, and intervene. While intervention can always be
carried out through social etiquette (“Wait! Don’t do that
please!”), FlowBlocks also seeks to cater for more physical
negotiation strategies that are commonly applied by
younger children [16, 22, 28]. Consequently, each of
FlowBlocks’ basic components – Blocks, trajectories and
Docks – affords independent ways of physical intervention.
Blocks can be “claimed” and moved into a private space, or
shielded from other users. Similarly, Docks can be shielded
from an approaching Block, for instance by covering it with
the hand, preventing the Block from being dropped. Users
can also physically influence the trajectory of a drag-
operation, for instance by otherwise “blocking the way”, or
pushing the respective hand away.

FlowBlocks draws inspiration from tangible computing [10,
14, 39, 37], particularly from the Token and Constraints
(TAC) paradigm [34, 38]. Promoting virtual blocks that
users can manipulate as the primary UI primitive, makes it
possible to apply physical metaphors and constraints to
each interface action, opening up a spectrum of design
options that are not usually considered by existing, widget-
based multi-touch UIs (cf. Fig. 3).

Influencing mutual awareness. FlowBlocks provide three
parameters that can be adjusted when designing for
awareness. First, positioning of Block and Dock are
extremely important, not only because longer distances
allow more time to become aware of the drag, but also
because it has an impact on what portion of the interactive
area has to be crossed. If drags happen in the periphery, they
are less likely to cause global awareness than drags that cross
shared, central space. Second, the designer can promote
awareness using the same trajectory constraints we described
for reducing noise and uncoordinated actions (Figure 3).
Speed-dependent wrappings ensure easily observed rapid
movements (c) or extra time (d). For instance, access to an
important global function could be surrounded by “rubber”,
providing others more time for anticipation and intervention.

Figure 3. Constraining trajectory of drag operations: a)

rails limit the movement of a block along a predefined path
(“allow” policy); b) barriers define regions through which a
block cannot pass (“deny” policy); c) ramps and d) rubber

pads require a certain velocity of the drag operation in
order to reach the target Dock.

Virtual barriers and paths create recognizable movement
patterns and “bottlenecks” through which each action has to
pass (a,b). These parameters can be chosen per action:
actions that affect all users (e.g. reset the application) can
combine any of these factors to achieve the desired global
awareness, while more personal functions can omit them.

Learning from others. Existing observations have provided

strong evidence that visitors learn from each other [16, 17],
by copying each other’s actions. This provides further

motivation for increasing mutual awareness as it gives
particularly novice user approaching the table, as well as

younger children or elders, to learn and copy interactions

observed from more advanced participants.

Managing simultaneous interactions. A special case of

conflict is the simultaneous manipulation of shared

resources – dubbed global coordination [26]. For instance,
in a map application, the current view on the map is a

shared resource in that changes will impact on anyone
around the table, even if they are engaged in independent

sub-tasks (such as looking at different parts of the map).

Operations on this shared resource (e.g. jumping to another
country) have to be regulated in that only one person can

manipulate the resource at a time. In crowd interaction, the

common case is that a single person triggers such an action,
while others are interrupted in their task, and potentially

confused about why this action is happening. FlowBlocks
can be used as described previously to create awareness and

enable anticipation of global events. Additionally, the

Block-Dock metaphor inherently conveys what actions can
be executed simultaneously. If a Dock is occupied, it can be

“locked”, causing any attempt to drop another Block into it
to “bounce off”, until the associated action is completed

(e.g. the view has zoomed to a new country on the map). It

is also possible to configure Docks to remain open, so that
the existing action can be interrupted by removing the

occupying Block, or by dropping a new Block onto the

Dock, causing the previous one to “fall out”. While this
mutual locking is possible with existing multi-touch widget

through “graying out” UI elements that are currently
inaccessible, FlowBlocks inherently convey and reflect the

state of execution, and the availability of functions.

Learning

Due to the lack of UI standards for crowd interaction [40]

and a variety of different ways in which users approach
gestural interfaces [16, 17, 42], any crowd UI has to clearly

convey its meaning to inexperienced users. This aspect is
particularly emphasized in a museum context, as dwell

times are usually short, and as a consequence, the learning

of the interface cannot take up more than a few seconds.

In conventional GUIs, the pointer’s hover state can be used

to instruct novice users how to interact – such as to show

tooltips when the mouse pointer is dwelling over a control.
Preview states, however, are sorely missed in a

straightforward port of WIMP UI to touch environments
[11, 40]. FlowBlocks introduces a novel state model for its

widgets that adds two additional states to existing state
models for touch-sensitive input devices [9]. Figure 4

shows the state-transition diagram for a Block. As soon as a

Block is touched, it enters a Tapped / Held state. This state is
also retained for at least 3 seconds in case the user

immediately retracts the touch – ensuring that a ‘tap’ gesture

will also activate this state for a short duration. A second
state Over Dock is entered as soon as a Block is moved over

a dock (but not released yet). The remaining states
correspond to the traditional three-state model of input [9]:

Idle ~ State 0 (out of range), Dragging ~ State 1 (tracking)

and In Dock ~ State 2 (state 2 refers to the activation of the
input device, in our case, a Block occupying a Dock).

Preview states can be used to teach both mode of operation,

and mechanics of the application. Based on our state model,
we can provide instructions at three moments where we are

able to infer possible user confusion. First, we need to
anticipate any graphical element to be tapped, including

both Blocks and Docks, as tapping is the most consistently

observed way users spontaneously interact with graphical
elements [16, 36]. While in the state model Tapped / Held

does not cause an action in FlowBlocks, we can utilize this
state to convey the proper mode of operation to the user.

Figure 4. FlowBlocks’ Block state diagram.

Figure 5. Feedforward help: a) prompting to drag; b)

showing directional guides leading towards compatible
Docks and c) preview before the execution of an action.

Managing screen clutter: d) using relative guides, e)
weighing guide strength by distance to Dock.

For Docks, we can provide appropriate feedback (cf. Fig.

5d). For Blocks, we can instruct the user to drag, for
instance, via a tooltip (cf. Fig. 5a). In case of a Block,

instructions can persist throughout dragging and provide
updated instruction and feedforward to help the user with the

proper execution of an action, such as guided by arrows

(Fig. 5b). Generally, all existing feedforward techniques can
be applied, such as OctoPocus [6] or ShadowGuides [11].

The second moment of potential confusion within our state

model regards the mechanics of the application. The Over

Dock state can be used to provide a preview of what would

happen if the currently dragged Block was dropped over a
Dock (cf. Fig. 5c). This is equivalent to a traditional tooltip.

Having designed FlowBlocks’ many parameters to overcome

specific challenges inherent in crowd interaction, we now
demonstrate their functional completeness. To do this, we

designed FlowBlocks-based widgets that mimic the logical

function of traditional WIMP UI elements.

FLOWBLOCKS WIDGETS

A significant challenge in the construction of UI elements

based on a new physical primitive is the need to ensure
functional coverage for application development. Previous

efforts have accomplished this by redesigning WIMP UI
widgets for use with their new primitives [5]. Our intention

is not to mimic earlier controls, but rather to use them as a

spanning set of logical actions required to create useful
applications. Based on common GUI toolkits, we have

identified 4 logical types of components that are required to
cover most interaction semantics: Binary Triggers,

Selections, Scalar Controls, and Menus. We omit logical

compound components as long as they can be constructed
using the five types of components we present (e.g. a File

Open Dialog is a compound widgets, consisting of a

scrollable container and binary controls).

Figure 6 shows each of the five classes of controls that can

be supported by FlowBlocks. We provide examples for
three different binary controls: slider-trigger controls (a),

similar to the “Unlock”-slider in iOS; (b) “url” like

navigation based on a “Navigation”-Dock and several
“URL”-Blocks; (c) an arrangement of two slider-triggers to

peek into and open a photo album – combining FlowBlocks

widgets in this way might lend itself to playfully teaching
multi-point gestures to novice users, similar to [8].

FlowBlocks can support many types of selectors through
the assembly of Blocks and Docks, as in examples (d) and

(e). While Docks usually are limited to one occupant, they

can also be considered as containers in which several
elements can be placed (e). Sliders can be constructed by

constraining a handle-Block within a rectangular area using

a barrier, and filling the area seamlessly with as many
docks as there are steps (f, g, h). Further mechanisms can be

put into place to prevent the accidental adjustment of a
slider: “gear-box-style” rails require the user to first lift the

handle before it can be horizontally adjusted (g).
FlowBlocks also affords various menu styles (i, j). Example

(i) shows a menu in the form of a single Block. Once the user

touches the Block, arrows point into three distinct directions,
and activates invisible docks, as well as an invisible barrier

that keeps the Block within the allowed area. If the user now
drags the Block in a direction beyond the bounds of the

barrier, it will automatically drop over one of the invisible

Docks. Thus FlowBlocks are used to implement the scale-
independence and free-movement of a Marking Menu [20].

These menus illustrate two more concepts that FlowBlocks

can support: dynamically showing and hiding its constituent
elements, as well as linking different states from our model

to create more complex UI behaviors.

Having demonstrated that FlowBlocks are logically complete

across the functions of the WIMP GUI, we now address their

design and integration into an application, as well as the
iterative design process that led to the development of many

of the design parameters we have discussed.

Figure 6. Examples for FlowBlocks versions of common
types of UI widget:binary controls, selectors, scalar

controls and menus; Legend: = rail, = invisible Dock,
 = invisible barrier.

APPLICATION AND EVALUATION

FlowBlocks is the outcome of a yearlong iterative design
process in which we implemented a Microsoft Surface
application, DeepTree, as part of a 3-year NSF Informal

Science Education project. We directly observed over 280
visitors at our DeepTree testing exhibit using talk-aloud
protocols. The DeepTree is an interactive and multi-touch
visual application that allows visitors to explore the
evolutionary relationship and historical time of divergence
of all life on earth. This relationship is visualized in the
form of a large phylogenetic tree based on data from the
Tree of Life Web Project [2] with over 70.000 species, and
20.000 internal nodes. Figure 7a shows DeepTree
application and its interface.

The main area shows the Tree of Life, as well as images
that mark the location of representative species in the tree
(in the illustration, the root of the tree is visible, showing
the three domains Bacteria, Eukaryotes and Archaea). Users
can browse the tree of life with drag-based manipulation,
dragging the tree downward to zoom-in towards the leaves,
or upward towards the root to zoom-out.

At the right side of the screen, a scrolling image reel of 200
selected species-Blocks are shown. Visitors can scroll
through the image reel by standard flicking techniques, or
pull any species from the reel and move it above the tree
(cf. Fig. 7b). Here, the Blocks gain a “chord” that visually
links the block with the location of the species in the tree, to
aid navigation and orientation (cf. Fig. 7c). Users can also
perform Find and Relate queries using our Flow Blocks UI.
An “Action” marking menu on the right side provides
access to Find, Relate and Return (cf. Fig. 7d). Once
dragged into a direction and dropped, the action Block
morphs into a dialog which occupies the central area of the
display (c.f Fig. e). The dialog presents one (Find) or two
(Relate) Docks, respectively. The user executes an action
by dragging species-Blocks into the Docks (cf. Fig. 7f).
When a species-Block is dropped into a Dock, the tree
seamlessly zooms and pans to show an appropriate view
(similar to a map flying to a new city). For relate queries,
this is a view of the most recent common ancestor (the
point in the tree were both species separated), as well as
visualizations of traits shared by the species which were
dropped-in to the Docks. The Return dialog contains a
trigger-slider (Fig. 6a), which flies the user back to the root
of the tree.

The aim of the exhibit was to allow visitors to explore
evolutionary concepts and to casually browse the tree for
any of the 70,000 species. The comparisons and searches
provide a focused activity, and a natural end point, which is
recommended in public venues with large crowds [36].

Method

As part of our iterative design process, we used the RITE
method (Rapid Iterative Testing and Evaluation [24])
throughout the year, testing the various stages of
development and alternative versions of FlowBlocks inside
one of the galleries at our partner museum. This method
was well suited for our project for reasons of external
validity: we wished to carry out our evaluations in the
native setting where our exhibit will be installed when it is
finished, and with actual visitors that spontaneously interact
with our system. Our partner museum has over 170,000
visitors per year from diverse backgrounds. Observations
were carried out during weekdays – typically attracting
school groups and summer camps – as well as on
weekends, when many families visit the museum.

RITE entails expert observations to drive quick design
iterations. Both video footage and field notes were
collected. Institutional Review Board permission was
granted to gather video recordings of visitors without prior
written consent, however, a video-taping notice had to be
present during observations, and collected footage could
only be used for internal analysis. Additionally, an observer
was physically present, shadowing the museum visitors and
taking notes from a discreet distance. After visitors finished
interacting with the DeepTree they were approached by the
observer and given the opportunity to provide verbal
feedback, which could inform our design iterations. To
reduce bias, an independent researcher who was not
involved in the development and design of FlowBlocks
carried out all observations. The criteria used to evaluate
each RITE iteration were based on the three pillars of the
presented design space:

1. Create mutual awareness, and enable conflict negotiation, be it
verbal or physical.

2. Reduce (or eliminate) invocations of actions through accidental
and uncoordinated touches (noise & interference).

3. Visitors should learn to use FlowBlocks during the (typically
short) time they interact with the system (learning to interact).

Figure 7. The DeepTree exhibit (a) and FlowBlocks UI (b, c, d, e, f).

New design iterations were begun as soon as it became clear
that the design goal was not yet met, or when bugs prevented
us from carrying out meaningful observations. Deployments
between iterations varied in length and number of users, but
were typically 1 week and approximately 20-40 observed
users. In total, 10 iterations were conducted over 15 months,
with over 280 visitors being observed. With this approach,
our designs have been tested beyond most of the reported
“in the wild” work [16, 23] in that we did not stop at one or
two rounds of evaluation. Instead, our designs have been
both designed and evaluated in the wild.

Observations & Findings

The FlowBlocks Design Space and Widgets, and Application
sections describe the finished product of the RITE process, as
well as several design parameters which, while clearly useful
in some contexts, did not suit the particular design of the
DeepTree exhibit. We now discuss observations gathered
throughout the iterative design process, which will be of
benefit to researchers and designers seeking to extend and
apply FlowBlocks, and to those designing UI for crowd
interaction in general.

Everyone can Learn to Drag

We found that nearly all users approach FlowBlocks in one
of two ways: some instantly start dragging Blocks around
and dropping them into Docks. Particularly children seem to
require no instruction as to how FlowBlocks work, which
indicates that they could infer the proper use from the visual
design of Blocks and Docks shown in Figure 7e. These
visuals were the 11th version tested. The second category of
user starts by tapping Blocks or Docks. While at this point,
feedforward can help the transition from tapping to dragging,
we went through several iterations for this transition to
happen quickly, and for all age groups. Initially, we used
arrow guides that marked the potential routes from the
dragged Blocks to the Docks, similar to those described in
Octopocus [6]. The arrows persisted through the act of
dragging and updated dynamically. While this effectively
encouraged hesitant visitors drag, for kids, who readily drag
as many species over the tree as possible, this technique lead
to significant screen clutter, as many guides cross large parts
of the display space.

After several iterations, the final feedforward consisted of
four mechanisms. First, if species Blocks within the image
reel are tapped, for a brief moment the Block is slightly
nudged outwards, and an animated arrow appears (Fig. 7b).
This arrow is relatively small, and disappears as soon as the
Block is dragged. This was effective in initiating the
transition to drag, while not causing screen clutter during
dragging, even when multiple elements where pulled out at
the same time. Secondly, we used an animated visual effect
of an ant-trail (cf. Fig. 7f) that surrounded both Docks and
Blocks – to convey their functional dependency. This effect
was only visible when an action dialog was in the center of
the display (after being selected from the action menu).
Thirdly, when tapping a dock, an animated hand shows up,
performing a drag operation from the image reel to the Docks

(cf. Fig. 7f). The described feedforward was effective for
transitioning most visitors to dragging, but particularly
seniors still showed hesitance and signs of confusion, even
when all three mechanisms where active. Thus, we added a
tooltip which was displayed when tapping either the Blocks
or the Docks. The tooltip gives instruction in written form,
and we found indicators in form of utterances during use that
this textual information was effective in instructing adults
and seniors, while not hindering kids (who do not read).

After these modifications, FlowBlocks were consistently
learned within the first few seconds of interaction. All groups
approaching the table, including school groups and seniors,
started carrying out actions almost immediately. Considering
that UI standards for crowd interaction do not yet exist [40]
and that user intuition regarding the “proper” use of such
UIs widely differs [16, 17, 42], FlowBlock is effective in
teaching a consistent operation of UI widget to a wide range
of users. We found less evidence that users noticed the
second type of feedforward (shown when a Block is
dragged over a Dock). Users seemed willing to try out an
action without precise foreknowledge of the result. This
may be less true in settings where errors are costlier.

Little Effect of Noise and Fiddling

Our initial prototype of the exhibit was based on tap-
activated species-markers. Concurring with existing

findings [17, 23, 36], we quickly disqualified this mode of
invoking commands for our context, as accidental and

random jumps prevented constructive collaboration,

particularly in large groups. After introducing FlowBlocks,
we did not observe any instances in which accidental

touches triggered one of our actions, or in which users

seemed to be confused about why a certain action
happened. Furthermore, active “fiddling” (children quickly

wiping their fingers across the species-Blocks) very rarely
caused issues other than multiple feedforward guides

cluttering the screen, which led to the described

feedforward designs. Overall, we were satisfied with the
effectiveness of FlowBlocks regarding both accidental as

well as uncoordinated touches, as we generally observed

constructive execution of actions despite intense interference.

Drag & Drop is Hard to Ignore and Easy to Prevent

We frequently observed occurrences in which users either
verbally or physically reacted to another user’s action prior

to a Block being dropped. We infer from this that users

were generally aware of each other’s actions, particularly of
those actions that we intended to require consent. This was

apparent after some initial play and learning about
FlowBlocks, children would transition to more constructive

interaction with the system, and actively prevent other

participants from executing interfering actions. Our
observation concurred with existing work in that physical

strategies are commonly deployed by younger children, such

as blocking one another’s hands, pushing each other away, or
covering Blocks or Docks to claim “territory” [16, 22].

Many Solutions to Affect Awareness and Collaboration

Throughout our iterations, we tested various parameters of
FlowBlocks and their effect on mutual awareness. In an
early version (Fig. 8a&b), both the Docks for Find and
Relate, as well as the reset slider were visible at all times,
and placed in the top portion of the display. While this
created functional overview, we did notice occasions on
which visitors seemed surprised and unaware of other
visitors triggering a Find, Relate, or Return (then called
Reset), and at times uncertain about which function (Find or
Relate) was currently executing. This was particularly
apparent in a version in which Find and Relate Docks were
spatially separated (cf. Fig. b). Several iterations addressed
this issue. In one design, we tried to first only show the
Find Dock (then “Jump To”, cf. Fig. 8c), then, after
selecting and flying to a species, show a Relate Dock (then
called “Compare With”, cf. Fig. 8d). Consequently, after
selecting a species for the Find-action, the species is now
the starting point for a Relate-query. In contrast to the
previous versions (Fig. 8a & b), this design made sure that

only the active Docks of one function – Find or Relate – are
visible at a time, and that both actions are presented in the
same area on the screen. While this design eliminated the
described awareness issues, the mechanism of a Dock
changing its function after it has been originally occupied
with a Block appeared to be a separate source of confusion.
Visitors could not anticipate this conditional change when
making their initial choice, nor did our design visually
communicate this change of functional meaning (the
Dock’s label is occluded once occupied by a Block). For
our exhibit, we dismissed conditionally changing Docks,
however, they might be suitable for other scenarios.

An alternative way of addressing the awareness issues
observed during earlier iterations (Fig. 8a&b), was to utilize
several of the described mechanisms to increase the
precursor necessary for each action (Fig. 8e). We place
virtual walls so that the species Blocks could only be
dragged out of a small bottleneck at the center. The species
docks for Find and Relate are hidden in “drawers", and first
have to be pulled out before being accessible (a form of
Dock-activation). Additionally, we made the Reset (or
Return) action accessible via a slider, which when pulled
out starts to cover the whole screen in a red “curtain”. The
slider has to be pulled across the whole screen and released
in order for the Reset action to trigger.

In a study within one of our iterations in which we
compared both interfaces (Fig 8a & e), we found the second
version reduced occurrences of confusion, by introducing
new constraints that made it harder for a drag to go
unnoticed. However, it was also less popular for adults, as
the effort of invoking an action was relatively high. In
contrast, kids loved this version (cf. “Constraints vs. Play”).
In our final design, we utilized the described marking menu
and a positioning of the action dialogs in the center of the
display (Fig. 7b). This design had three benefits: the
marking menu added another precursor to an action;
positioning the the action’s Docks into shared space (as
advocated by [25]) brought the Docks of an incoming
action to everyone’s attention; and showing only Docks of a
single function at a time reduced the confusion observed
with earlier designs (Fig. 8a & b). The final UI version
balanced suitability for a large age range with good
awareness characteristics.

Constraints vs. Play

By providing a set of loose movable tokens, FlowBlocks
inherently lend themselves to playful interaction. We have
observed various forms of play with the DeepTree UI.
FlowBlocks originally implemented inertia, so the species
Blocks could be flicked around the table, causing
particularly younger kids to “play hockey” (as one of our
younger visitors called it). Another popular game among
kids was to drag as many species blocks onto the tree as
possible. While this form of play seemed enjoyable, it
distracted from “deeper” engagement, particularly for
younger audiences.

Figure 8. Selection of discarded

design iterations of the DeepTree UI.

As the DeepTree is focused on learning, we experimented
with constraints to “enforce order”, such as disabling
inertia, introducing the bottleneck (Fig. 8c), and forcing a
one-at-a-time order for pulling out species Blocks. While
these modifications reduced levels of play, the overuse of
such constraints resulted in slow and awkward interaction
experiences for adults. Likewise, we observed instances in
which the presence of constraints encouraged an “obstacle
course” style of play (e.g. routing a Block through the
mentioned bottleneck). Generally, we feel that certain
levels of play are inherent to FlowBlocks, which has to be
considered by the UI designer. In our final design, we tried
to strike a balance of allowing certain levels of play while
minimizing their impact on mature participants (see
“Managing Screen Clutter”). This can enable little kids to
“participate” alongside more focused and deeper
interaction.

Managing Screen Clutter

One issue we have identified is that Blocks scattering
around the Display during usage (due to fiddling or directed
use) can cause significant screen clutter. We have found
two mechanisms that deal with this issue: first, Blocks that
are not dropped over a Dock can snap back to their original
location; secondly, Blocks can be configured to disappear if
they are not actively touched. In our design, the Blocks
dragged onto the tree started to slowly fade out when not
touched, and eventually move back to the reel. This was
successful in reducing clutter.

Sequential vs. Parallel Interaction

As described in the design space, FlowBlocks can be
configured to enable parallel interaction or to enforce
sequential execution of actions. While one of the obvious
strengths of multi-touch technology is its ability to allow
multiple users to interact at the same time, we have found
that sequential interaction also has merits. For learning, it is
preferable for visitors working together rather than working
side-by-side. At the macro level, the FlowBlocks UI
enforces a parallel execution of actions in order to create a
shared context for all participants. However, at the micro-
level, phases of negotiation and simultaneous interaction
were frequently observed, both verbally, as well as
facilitated through moving species Blocks close to the
Docks to signal individual preference for which parameter
to chose next. We frequently observed turn-based
interaction, and at occasion a modality of actor and
observer(s). However, both modes of operating the
DeepTree were successful in engaging participants in a
shared learning activity.

In summary, we found that FlowBlocks, in their current
design, and with various parameters, can support a variety
of different designs that allow UI designers to actively
influence how certain actions are perceived, and enable the
creation of successful, crowd-friendly UI.

CONCLUSION

Although the challenges of crowd interaction are widely
acknowledged, there are no general UI frameworks or

design guidelines that can inform the concrete design of

crowd UIs across a variety of application scenarios. Our
work starts to fill this gap by providing a general UI, based

on the drag-and-drop primitive that is custom-tailored to the
challenges of crowd interaction. Our year-long iterative

design and evaluation has established the founding qualities

of FlowBlocks – enabling crowd interaction in the face of
chaos: its robustness regarding accidental touches and

interference, its ease of learning and use for a wide

spectrum of users, and its capability to provide application
designers with a variety of options to influence mutual

awareness, and facilitation of conflict management. We
have also shown that FlowBlocks provide common

interaction primitives that afford the functional scalability of

common UI for multi-touch interaction.

While our insights have confirmed that drag-based widgets
work well for crowd interaction for the DeepTree museum
exhibit, further studies are required to understand how best
FlowBlocks can be extended to support wider application
scenarios. Theoretically, FlowBlocks can support “desktop-
grade” functionality in crowd interaction settings, given
their coverage of existing UI primitives. We certainly do
not envision to port complex applications, such as photo
editing software, to crowd interaction. We do believe,
however, that there are many meaningful application
scenarios that benefit from more complex interaction
semantics compared to “picture-sharing” type of interaction
commonly found on surface computer. The DeepTree exhibit
serves as an example of more complex interaction flow.

In museum and public contexts, UI composition has
significant impact on whether visitors have an enjoyable
social experience in which they acquire knowledge, or
leave frustrated and confused. Every effort to optimize the
UI can thus potentially have significant impact on a wide
range of users. DeepTree will soon be deployed in five
different museums, with an estimated 4.5 million total
visitors in the next year. FlowBlocks will serve to enable
visitors to enjoy a meaningful and playful learning
experience.

ACKNOWLEDGEMENTS

We thank the Harvard Museum of Natural History, and its
Director of Exhibitions, Janis Sacco, for allowing us to
conduct this research in their galleries. We also thank Kay
Hofmeester and Paul Hoover, formerly of the Microsoft
Surface team, for their discussion on drag & drop-based
widgets. We thank the National Science Foundation for
their support of this project (DRL-1010889). Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES
1. Microsoft Surface. http://www.microsoft.com/surface/

2. http://www.tolweb.org

3. http://www.ideum.com/interactive-exhibits/

4. Antle A. Futura: design for collaborative learning and game play
on a multi-touch digital tabletop. TEI'11, 93-100.

5. Apitz, G. et al. CrossY: a crossing-based drawing application..
UIST '04,3-12.

6. Bau, O. et al. OctoPocus: a dynamic guide for learning gesture-
based command sets. UIST '08, 37-46.

7. Belatar, M. et al. Sketched menus and iconic gestures,
techniques designed in the context of shareable interfaces. ITS

’10, 143 – 146.

8. Bragdon, A. et al. Gesture play: motivating online gesture
learning with fun, positive reinforcement and physical
metaphors. ITS '10, 39-48.

9. Buxton, W. A three-state model of graphical input. INTERACT

'90, 449-456.

10. Cohen, J. et al. Logjam: a tangible multi-person interface for
video logging. In Proc. CHI '99, 128-135.

11. Freeman, D. et al. 2009. ShadowGuides: visualizations for in-
situ learning of multi-touch and whole-hand gestures. ITS '09,
165-172.

12. Frisch, M. Et al. Grids & guides: multi-touch layout and
alignment tools. CHI '11, 1615-1618.

13. Gutwin, C. et al. A descriptive framework of workspace
awareness for real-time groupware. CSCW 2002, 411 – 446.

14. Hartmann, B. Pictionaire: supporting collaborative design work

by integrating physical and digital artifacts. CSCW '10, 421-
424.

15. Hinrichs, U. et al. Emdialog: Bringing information visualization
into the museum. IEEE ToV&CG, 14(6):1181–1188, 2008.

16. Hinrichs, U. et al. Gestures in the wild: Studying multi-touch
gesture sequences on interactive tabletop exhibits. CHI 2011,
3023-3032.

17. Hornecker, E. I dont understand it either, but it is cool-visitor
interactions with a multi-touch table in a museum. TABLETOP

2008, 113–120.

18. Hornecker, E. Interactions around a contextually embedded
system. TEI ’10, 169 – 176.

19. Jacucci, G. et al. Worlds of information: designing for
engagement at a public multi-touch display. CHI ’10, 2267–
2276.

20. Kurtenbach, G. et al. 1994. User learning and performance with
marking menus. CHI'94, 258-264.

21. Lepinski, G.J. et al. The Design and Evaluation of Multitouch
Marking Menus. CHI ’10, 2233 – 2242.

22. Marshall, P. et al. Fighting for control: children's embodied
interactions when using physical and digital representations. In
CHI ’09, 2149 – 2152.

23. Marshall, P. et al. Rethinking’multi-user’: an in-the-wild study
of how groups approach a walk-up-and-use tabletop interface. In
CHI '11, 3033--3042 2011.

24. Medlock, M. et al. The Rapid Iterative Test and Evaluation
Method: Better Products in Less Time. Cost Justifying Usability,

An Update for the Internet Age. Bias, R. and Mayhew, D. (eds).
Boston, Morgan Kaufmann, 2005.

25. Morris, M.R. et al. Beyond social protocols: Multi-user
coordination policies for co-located groupware. CSCW’04 262 –
265.

26. Morris, M.R. et al. Cooperative gestures: multi-user gestural
interactions for co-located groupware. CHI’06 1201 – 1210.

27. Moscovich, T. 2009. Contact area interaction with sliding
widgets. UIST '09, 13-22.

28. Olson, I.C. et al. "It's just a toolbar!" Using Tangibles to Help
Children Manage Conflict Around a Multi-Touch Tabletop.
TEI'11, 29-36.

29. Peltonen, P. et al. It’s mine, don’t touch!: interactions at a large
multi-touch display in a city centre. CHI’08 1285–1294.

30. Schmidt, H. et al. memory [en] codebuilding a collective
memory within a tabletop installation. Proc. CAe, Eurographics
Association, 135–142, 2007.

31. Schmidt, D. et al. IdLenses: Dynamic personal areas on shared
surfaces. ITS 2010, 131-134.

32. Shen, C. et al. DiamondSpin: An Extensible Toolkit for Around-
the-Table Interaction. CHI’04, 167-174.

33. Scott, S. et al. 2009. Social immersive media: pursuing best
practices for multi-user interactive camera/projector exhibits.
CHI '09, 1447-1456.

34. Shaer, O. et al. The TAC Paradigm: Specifying Tangible User
Interfaces. PUC, vol. 8, no. 5, pp. 359-369, Sept. 2004.

35. Sulaiman, N. S. et al. Attribute Gates. UIST 2008, 57 – 66.

36. Ryall, K. et al. Experiences with and observations of direct-
touch tabletops. Tabletop, 89-96.

37. Ullmer, B., Ishii, H., and Glas, D. mediaBlocks: physical
containers, transports, and controls for online media. In Proc.
SIGGRAPH '98, 379-386.

38. Ullmer, B., et al. Token+Constraint Systems for Tangible
Interaction with Digital Information. ToCHI 2005, pp. 81-118.

39. Weiss, M. et al. 2009. SLAP widgets: bridging the gap between
virtual and physical controls on tabletops. CHI '09, 481-490.

40. Wigdor, D., Wixon, D. Brave NUI World | Designing Natural

User Interfaces for Touch and Gesture. Morgan Kaufmann,
2010.

41. Wilson, A. et al. 2008. Bringing physics to the surface. UIST

'08, 67-76.

42. Wobbrock, J. et al. 2009. User-defined gestures for surface
computing. CHI '09, 1083-1092.

