FlowBlocks: A Multi-Touch Ul for Crowd Interaction

Florian BlocK, Daniel Wigdof, Brenda Caldwell Phillips Michael S. Hor, Chia Sheh

"Harvard University’University of Toronto Northwestern University
Yfblock | cshen | phillips}@seas.harvard.ettwigdor@dgp.toronto.edu,
3michael-horn@northwestern.edu

ABSTRACT

Multi-touch technology lends itself to collaboraicrowd
interaction (Cl). However, common tap-operated widg
are impractical for CIl, since they are susceptilde
accidental touches and interference from othersusafe
present a novel multi-touch interface calleldwBlocksin

which every Ul action is invoked through a smatjsence
of user actions: dragging parametridl-Blocks and
dropping them over operationdl-Docks The FlowBlocks

examinations have discovered that this context tesea
unique circumstances, that we catbwd interaction(Cl)

[15, 16, 17, 19, 23, 29, 30]. When designing usterfaces

for crowds, one has to deal with the knowshdos” that
arises when groups of strangers from various agepgr
and backgrounds spontaneously come together to
“collaboraté (cf. Fig. 1): accidental touches are frequent
[17, 36]; parallel interaction is the norm [17, 23, 36];
levels of interference are high [16, 27, 29]; cimhdl

app_roach is advanta_geous for C_I because it_a) makebetween participants commonly arise [16, 23, 29]d a
accidental touches inconsequential; and b) intreduc mutual awareness amongst users regarding each’sother

design parameters for mutual awareness, concuimpunt,

actions and intentions cannot be considered a ¢j28n

and conflict management. FlowBlocks was successfull 29]. Additionally, Ul standards for crowd interamti do not

used on the floor of a busy natural history museuve.
present the complete design space and describardoyey
iterative design and evaluation process which eyguidhe
Rapid Iterative Test and Evaluation (RITE) methodai
museum setting.

Author Keywords
Crowd Interaction, Multi-Touch Ul, Drag & Drop.

ACM Classification Keywords
H5.m. Information interfaces and presentation:
Interfaces. — Graphical User Interfaces.

General Terms
Design, Human Factors.

INTRODUCTION
Interactive tabletops and multi-touch surfacessageowing

area of human-computer interaction research, andnte

studies have focused on the use of such devicegah
world contexts including museums, galleries, anBaar

spaces. Indeed, informal learning environments sash
museums have emerged as one area in which muttirtou

interfaces can be meaningfully applied [15, 16,304, The
high-bandwidth input capabilities coupled with awviiing
form factor seem ideal to facilitate the degreesotial

learning that is desirable in a museum context Such

Permission to make digital or hard copies of alpart of this work fc
personal oclassroom use is granted without fee provided tbpies ar
not made or distributed for profit or commercialadtage and that cop
bear this notice and the full citation on the fipsige. To copy otherwis
to republish, to post on servers or toisebute to lists, requires pri
specific permission and/or a fee.

UIST'12 October 7-10, 2012, Cambridge, MA, USA.

Copyright © 2012 ACM 978-1-XXXX-XXXX-X/XX/XX... $100.

yet exist [40] and users approach gestural integfaia a
variety of different — and often conflicting — waj&6, 17,
42]. At the same time, average dwell times are (amund
four minutes for a successful exhibit), making #rdh to
accommodate the significant training associatedh wit
teaching gestures to novice users [5, 6, 8, 1llerally
bringing order to the “chaos”, while providing a Ul that
everyonecan almostnstantly useis a significant challenge
that every interface designer targeting crowd axtdon

User must overcome.

Standard multi-touch Uls (such as the Microsoft fSue
SDK [1]) provide a set of conventional widgets atapfor
touch, that can be easy to learn (as they fadlitde
transfer of desktop idioms, e.g. “click” “tap”) [42], and
also scalable by providing functional coverage foost
application scenarios. However, widgets that rely o
tapping graphical elements on the tabletop do not perform
well in chaotic crowd interaction circumstancesttesy are

Figure 1. Chaos in a museum (frame from a video).

highly susceptible to interference from accidengald
uncoordinated touches [17, 23, 36]. An alternatixgy of
circumventing these issues is to design “Ul-lesdiltim
touch applications, such as the “media-sharing&tyqf
application that primarily relies on the basic npatétion
of graphical objects (drag/resize/rotate) [3, 4, 18, 22,
29], or interaction with physical phenomena thateirently
lend themselves for multi-point interaction [33,].4These
types of applications may cope well with the chdng,the
need for scalability limits the degree to which gien
physics-based approaches can be effective [42]s Thi
motivated our efforts to go beyond “Ul-less” mulikich
applications, and to push towards a fully functiddathat
enables a wide spectrum of interaction semantidsjew
being tailored to the requirements of crowd intécac

In this paper, we propogelowBlocks,a novel multi-user,
multi-touch interface that relies odrag & drop as the
primary input primitive. Every action is triggerely
dragging aBlock and dropping it over Bock (see Fig. 2).
To successfully execute a function, a user hasrdo gick
up the Block, drag it across a certain trajectosignaling

widgets, demonstrating functional coverage for fa#
range of application scenarios. Finally, we prestd
evaluation used to yield the current design of Bteks,
conducted while they were in use in a deployediaatibn
in one of our partner museums, and discuss ouinfiysd

RELATED WORK

Of particular relevance to FlowBlocks is work that
addresses multi-user interaction conflict manage nagl
mutual awareness, identifies problems with tap-thase
actions, or provides motivation for drag & drop iaput
primitive. Additionally, we discuss research thatemds
existing multi-touch Uls, Uls based on new input
primitives, and tangible Uls.

Conflict Management and Mutual Awareness

A series of studies have pointed out that a variafty
conflicts that commonly arise in multi-user use of
interactive surfaces [7, 22, 25, 26, 29, 32, 3@jsTncludes
conflicts through the sudden occlusion of screextestate
or unexpected changes to the state of applicafior2,
32], conflicts caused by accidental touch [36], pmwer

intent to actto other users — and drop it over the target gyyggles [22, 29]. Several approaches have bessepted

Dock toexecute the intended action

Promoting Drag & Drop to the primary means of
performing all system functions provides inherent
advantages in the context of crowd interactionstFiit is
less prone to being activated by accidental or ardioated
touches (or *“fiddling” which occurs frequently with
children around a multi-touch surface), particylanthen
the start and end points of the drag & drop arthéarapart
and when other trajectory-related constraints apply
FlowBlocks provides several design parameters that
designer can use to “fortify” their Ul. Secondigpping
and holding are freed to act as initiators for feedforward
mechanisms that instruct novice users on how tothiee
application and its Ul. Thirdly, as we will demonage, drag

& drop interaction with Ul widgets introduce sevedasign
parameters that can help promote mutual awareneds a

conflict management between users. We have dewklope

FlowBlocks, and established its core qualities,irdyra
year-long process of Rapid Iterative Testing andliation
(RITE [24]) in one of our partner museums.

The contribution of this paper is threefold: aftiscussing
related work, we present the FlowBlocks design spac
providing details about our core principles, comgms,
and design parameters. We then illustrate how comigio
controls can be realized or replaced using FlowBoc

Pick Up

> Drag Drop —> Action
)

Block

" Dock

Figure 2. FlowBlocks basic principle: every action is
executed by picking up a Block, dragging it along a
certain trajectory, and dropping it over a Dock.

to address this issue: reducing conflicts througkating
mutual awareness [7, 25]; negotiating Ul acces&dam
user identity [26, 31]; and enabling physical némgan
techniques [18, 22, 28].

FlowBlocks provides means of addressing conflicoaigh
awareness and physical negotiation: similar tosketching
gestures presented by [7]. Drag & drop provide®@am
precursor to an action, particularly when perfornaedoss
shared space. This approach builds orPttieileged Object
policy [25], which suggests moving actions affegtiall
users to a shared space. Similar to physical ahject
dragable graphical objects afford ways to utilize
territoriality and negotiating for access (ratheairt fighting
after the fact), commonly observed as natural biehsv
when children interact in groups [18, 22, 28].

Morris et al. propose that social protocols arasffisent

for facilitating sharing in some use scenarios, describe a
series of policies that can enforce “good behavariong
users [25]. With FlowBlocks, we follow a fundamdhta
different philosophy: we believe that social pratiscare
not inherently insufficient, but rather that Ul'ssded on
point-and-click provide insufficient cues to fatdlie mutual
awareness and thus underserve the needs of satizdqls.

Problems with Tap-Based Actions

Existing multi-touch Uls, such as Microsoft's SuaSDK
and Apple’s iOS, adapt conventional Ul widgets (sas
buttons, drop down lists or radio buttons) to toucput,
utilizing finger-tapping as the equivalent to clioff in the
WIMP GUIs. While this allows a transfer of knowledg
between traditional Uls and novel multi-touch syste the
lack of a hover state in touch devices eliminatetpfil
feedforward and feedback mechanisms [11, 40]. Eurth
studies observing crowd interaction report thabmeous

touches lead to the frequent occurrence of falsitige
invocation of actions, causing misinterpretation Of
behavior [36], and general confusion [17]. Whileoeeous
touches can be accidental,
intentional — caused by users who either don'tizeabr
don't care that their actions will interfere witthers. While
certain mechanisms can be applied to reduce thatimeg
effect of unintended or unnoticed touches — timgdot
prevent repeated activation [17] and confirmatioalays
[23] — these mechanisms can themselves lead
unresponsiveness, confusion [17], and tension lEtwe
users [23]. Based on our own experiences in bigldinseum
exhibits, we concur with these findings, and coesid
standard multi-touch Uls unsuitable for crowd iatgion.

Drag & Drop

Dragging is one of the most common modalities olesr
when users spontaneously approach tabletop Uls42p,
Evidence for the success of dragging as an inpulaiity is

also provided by a series of “picture-sharing” typé

tabletop applications, in which dragging responasl wo

interference and accidental touches [3, 16, 18222, For

example, the “Futura” tabletop game [4] allows ssean
drag strategic resource tokens from a toolbarggstl at the
four sides of the table) and drop them over anrenwment
simulation in board-game like fashion (causing #acg in

the outcome of an application). The authors repotteat

drag & drop worked well despite intense collabamatiand

selected using sliding motions, aiming to redu@etgction
ambiguity on high resolution screens in which Ubgets
are tightly packed. Gestures similar to “crossirgfid

in many cases they arésliding” can be described as sub-primitives ofglgadrop

and have been incorporated into FlowBlocks.
Teaching Multi-Touch Gestures

One challenge for novel Uls is to be transparemdeice
users [4, 5]. Consequently, there has been a safriesrk

tamimed at teaching touch and gesture-based inpueatm

Marking Menu style gestures [20], OctoPocus [6]vites
a dynamic guide that help users execute, learn, and
remember gesture sets; ShadowGuides [11] providesu
guides that show a visualization of the user’s disg
(feedback) alongside possible ways of continuirggsture
(feedforward). OctoPocus and ShadowGuides reqbiee t
user to first understand the meaning of the vigatibns
they provide, thus, the process of training itselfjuires
some degree of learning which is not practical irfCla
setting where a walk-up-and-use is essential. Intrast,
GesturePlay [8] provides an online learning systiem
teaching gestures through game-like virtual-physica
widgets and positive reinforcement. Here, the meisna
for teaching gestures utilizes physical puzzles tha user
can solve and in the process learn the executiora of
gesture. Just-in-Time Chrome provides Ul tailore@vtoke
various gestures [40]. It is also central to FloadKs to

that users quickly learned how to place game takensprovide similar inline mechanisms that can helpitois

Overall, dragging seems to be an input primitive ttan be
easily learned and performed by a variety of défgrusers.
This motivated us to promote dragging as the prymar
interaction primitive to prepare the execution ofation.

Extending Existing Uls

There is a series of work that aims at extendimgets of
existing conventional Uls to multi-touch operatiotine
DiamondSpin Toolkit [32] provides a series of novdl
mechanisms to facilitate around-the-table intecactisuch

quickly learn the operation of drag-based widgEtements
of OctoPocus and GesturePlay have been incorpoiated
the design of FlowBlocks’ inline-feedback and
feedforward. ShadowGuide’'s use of the ‘tap’ gesttoe
invoke feedforward mechanisms has also been incatguh

FLOWBLOCKS DESIGN SPACE
In FlowBlocks, the most elementary functional upit

interaction — invoking a binary command — is trigggeby a
compound actionrequiring the execution of two binary

as multi-threaded input event streams and concurrenactions and one continuous action: acquisition dleck

menus; Multi-touch Marking Menus aim to increase th
bandwidth of touch input [21]; Attribute Gates iz
dragging trajectories across various graphicalsgateadapt
the object’s attributes to different territories the tabletop
[35]; and Grids & Guides [12] increase the precisiof
multi-touch manipulations. FlowBlocks is designedr f
crowd interaction, and thus has less emphasis ore sof
these aspects, such as precision and throughput.

Graphical Ul widgets that are operated through amike
gesture have been proposed before, albeit for olénces,
motivated by different factors, and afforded witiffedent
metaphors [5, 27]. Like FlowBlocks, CrossY [5] raqps
WIMP widgets with new Ul controlled with a new irtpu
primitive: crossing. This is done because crossngore
efficiently and more accurately performed with anpe
Similarly, Moscovich [27] presented a set of widget

(binary), dragging the Block over a Dock (continspand
releasing the Block (binary). FlowBlocks intentiiga
separates the three components previously reqtimea
binary action. In this section we will show how shi
separation can be beneficially used to addresshakienges
of crowd interaction. Based on our analysis ofteslavork,
we concentrated on designing FlowBlocks to meesehe
three challenges:

Noise and interference minimize the effect of
accidental touches and uncoordinated “fiddling”.

2. Mutual awareness and conflict managemémntrease
awareness between users regarding their intentidn a
actions, and provide tools for negotiating condlict

3. Learning how to interactany user must be able to use
an interface almost instantly and without training.

The following subsections describe the mechaniting
to each point at theonceptuallevel of FlowBlocks. In the
next section we will presenpractical guidelines for
applying FlowBlocks in practice.

Dealing with Noise and Uncoordinated Interference

Generally, FlowBlocks widgets are less susceptitie
accidental touches, because touches alone doiggeéitran
action, but only cause feedforward to appear. Hemnev
accidental touches could still coincide to formeajgence
that mimics a drag operation, potentially trigggrian
unintended action. For this to happen, an acciti¢atech
would have to start over the position of a Blockove
across a certain trajectory, and drop the Blockr ahe
corresponding Dock. While we found this to veryetar
happen in practical use, FlowBlocks provides three
parameters that can further reduce the likeliheddch we
will review in turn: increasing the distance betweock
and Dock, requiring Dock activation, and constnagnthe
trajectory of the drag component. These methodsnate
only a means of counteracting accidental touchas,can
also be used to reduce the effect of uncoordindigdling”,
which is especially prevalent among younger childre

Constraining trajectory. Figure 3 provides several
examples for trajectory constraints: a) constragnin
movement to a path, b) using virtual barriers tigfowhich
Blocks cannot pass, and c) & d) requiring certguaesl of
drag to allow a Block to reach the Dock. These trairgs
require more coordination and intent from a usewriter to
successfully complete an action, which reducesattion’s
susceptibility to noise and uncoordinated touches.

Dock activation Docks can be configured to require
explicit activation before Blocks can be droppearotheir

aware of an incoming action, decide if it conflietgh their
interests, and intervene. While intervention camagk be
carried out through social etiquette (“Wait! Donlo that
please!”), FlowBlocks also seeks to cater for muingsical
negotiation strategies that are commonly applied by
younger children [16, 22, 28]. Consequently, eadh o
FlowBlocks’ basic components — Blocks, trajectoréesl
Docks — affords independent ways of physical irgation.
Blocks can be “claimed” and moved into a privatacsy or
shielded from other users. Similarly, Docks carshielded
from an approaching Block, for instance by coveiiingith

the hand, preventing the Block from being droppdsers
can also physically influence the trajectory of eagd
operation, for instance by otherwise “blocking thay”, or
pushing the respective hand away.

FlowBlocks draws inspiration from tangible compagtiii 0,
14, 39, 37], particularly from the Token and Coaistis
(TAC) paradigm [34, 38]. Promoting virtual blockkat
users can manipulate as the primary Ul primitivekes it
possible to apply physical metaphors and constaiat
each interface action, opening up a spectrum ofgdes
options that are not usually considered by existimdget-
based multi-touch Uls (cf. Fig. 3).

Influencing mutual awarenesglowBlocks provide three
parameters that can be adjusted when designing for
awareness. First, positioning of Block and Dock are
extremely important, not only because longer distan
allow more time to become aware of the drag, bab al
because it has an impact on what portion of theraative
area has to be crossed. If drags happen in theheeyi they

are less likely to cause global awareness tharsdbeag cross
shared, central space. Second, the designer canof@o

active area, which adds another layer of intent andawareness using the same trajectory constraintteseribed

coordination that is required to execute an action:

Tap-to-activatetapping a dock “opens” it for a certain
time window.

Hold-to-activate the dock is receptive to a Block for
as long as a touch is held in its active area.

While the presented mechanisms of constraining
trajectories and dock activation counteract theeaffof
accidental and uncoordinated touches, they are wdséul

in the context of mutual awareness and conflict
management amongst users. Several other mechanfsms
FlowBlocks also help to address this design chglen

Mutual Awareness and Conflict Management

Mutual awareness is key factor in the fluidity and
naturalness of collaboration, and in allowing sbcia
protocols to facilitate interaction [13]. By beimyvare of
other’s intentions and actions, conflicts can bected and
negotiated [7, 25]. FlowBlocks’ core primitive —ady &
drop — consciously separates thent to interact —
selecting a Block and dragging it towards a Dockom
executing the intended actiendropping the Block over the
dock (cf. Fig.3). This gives users the chance toobe

for reducing noise and uncoordinated actions (l€ig8y.
Speed-dependent wrappings ensure easily obsenmd ra
movements (c) or extra time (d). For instance, s&te an
important global function could be surrounded bybltrer”,
providing others more time for anticipation ancemention.

~[
3

SLOW / FASTx d

b

/
Figure 3. Constraining trajectory of drag operations: a)
rails limit the movement of a block along a predefined path
(“allow” policy); b) barriers define regions through which a
block cannot pass (“deny” policy); c) ramps and d) rubber
pads require a certain velocity of the drag operation in
order to reach the target Dock.

Virtual barriers and paths create recognizable m@re
patterns and “bottlenecks” through which each actias to
pass (a,b). These parameters can be chosen pen:acti
actions that affect all users (e.g. reset the eafdin) can
combine any of these factors to achieve the degjleial
awareness, while more personal functions can dwaiht

Learning from othersExisting observations have provided
strong evidence that visitors learn from each ofhér 17],
by copying each other’'s actions. This provides Heirt
motivation for increasing mutual awareness as iuegi
particularly novice user approaching the tablewadl as
younger children or elders, to learn and copy atgons
observed from more advanced participants.

Managing simultaneous interaction®. special case of
conflict is the simultaneous manipulation of shared
resources — dubbeglobal coordination[26]. For instance,
in a map application, the current view on the mapai
shared resource in that changes will impact on a@yo
around the table, even if they are engaged in ie@gnt
sub-tasks (such as looking at different parts ef miap).
Operations on this shared resource (e.g. jumpiranaiher
country) have to be regulated in that only one @ersan
manipulate the resource at a time. In crowd intevacthe
common case is that a single person triggers sucti@on,
while others are interrupted in their task, andeptally
confused about why this action is happening. FlavweB$
can be used as described previously to create aesseand
enable anticipation of global events. Additionallshe
Block-Dock metaphor inherently conveys what actioas
be executed simultaneously. If a Dock is occupitecan be
“locked”, causing any attempt to drop another Bloub it
to “bounce off”, until the associated action is qieted
(e.g. the view has zoomed to a new country on tap)mit
is also possible to configure Docks to remain opsenthat
the existing action can be interrupted by removihg
occupying Block, or by dropping a new Block onte th
Dock, causing the previous one to “fall out”. Whileis
mutual locking is possible with existing multi-tduavidget
through “graying out” Ul elements that are currgntl
inaccessible, FlowBlocks inherently convey andeetfithe
state of execution, and the availability of funoto

Learning

Due to the lack of Ul standards for crowd interaict[40]
and a variety of different ways in which users aagh
gestural interfaces [16, 17, 42], any crowd Ul twaslearly
convey its meaning to inexperienced users. Thig@sis
particularly emphasized in a museum context, aslldwe
times are usually short, and as a consequencdedhsing

of the interface cannot take up more than a feworses.

In conventional GUIs, the pointer’s hover state barused
to instruct novice users how to interact — sucticashow
tooltips when the mouse pointer is dwelling overoatrol.
Preview states, however, are sorely missed

Block
Entering
Dock Area

Touch End
+ 3 sec

Figure 5. Feedforward help: a) prompting to drag; b)
showing directional guides leading towards compatible
Docks and c) preview before the execution of an action.

Managing screen clutter: d) using relative guides, e)

weighing guide strength by distance to Dock.

straightforward port of WIMP Ul to touch environnien
[11, 40]. FlowBlocks introduces a novel state mdoelits
widgets that adds two additional states to existiate
models for touch-sensitive input devices [9]. Fayut
shows the state-transition diagram for a Blocksésn as a
Block is touched, it entersTeapped / Heldstate. This state is
also retained for at least 3 seconds in case tleg us
immediately retracts the touch — ensuring thatp’ ‘gesture

will also activate this state for a short duratién.second
stateOver Dockis entered as soon as a Block is moved over
a dock (but not released yet). The remaining states
correspond to the traditional three-state modehpéit [9]:

Idle ~ State O(out of range)Dragging ~ State 1(tracking)
andIn Dock ~ State 2(state 2 refers to the activation of the
input device, in our case, a Block occupying a Dock

Preview states can be used to teach both modeeoétogm,
and mechanics of the application. Based on oue statdel,
we can provide instructions at three moments wherere
able to infer possible user confusion. First, wechdo
anticipate any graphical element to be tapped,udiob
both Blocks and Docks, as tapping is the most ctesily
observed way users spontaneously interact withhigap
elements [16, 36]. While in the state modelpped / Held
does not cause an action in FlowBlocks, we cairetthis

N Astate to convey the proper mode of operation toutes.

For Docks, we can provide appropriate feedback K.
5d). For Blocks, we can instruct the user to drfm,
instance, via a tooltip (cf. Fig. 5a). In case oBmck,
instructions can persist throughout dragging anovige
updated instruction and feedforward to help the udéth the
proper execution of an action, such as guided lbgwar
(Fig. 5b). Generally, all existing feedforward taifues can
be applied, such as OctoPocus [6] or ShadowGuities [
The second moment of potential confusion within state
model regards the mechanics of the application. Qher
Dock state can be used to provide a preview of wiild
happen if the currently dragged Block was droppeer @
Dock (cf. Fig. 5¢). This is equivalent to a tragiital tooltip.

Having designed FlowBlocks’ many parameters to cuee
specific challenges inherent in crowd interactiore now
demonstrate their functional completeness. To dg the
designed FlowBlocks-based widgets that mimic trgickd
function of traditional WIMP Ul elements.

FLOWBLOCKS WIDGETS

A significant challenge in the construction of Uements
based on a new physical primitive is the need tsuen
functional coverage for application developmeneviyus
efforts have accomplished this by redesigning WIMP
widgets for use with their new primitives [5]. Ouatention
is not to mimic earlier controls, but rather to tisem as a
spanning set of logical actions required to creadeful

applications. Based on common GUI toolkits, we have

identified 4 logical types of components that aguired to
cover most interaction semanticsBinary Triggers,
Selections, Scalar Controlgnd Menus We omit logical

compound components as long as they can be cotestruc

using the five types of components we present @ Bile

Open Dialog is a compound widgets, consisting of a

scrollable container and binary controls).

Figure 6 shows each of the five classes of conthas can

Binary controls
a) “Button”

b) “Links”

Navigate to AR
Amééon
Google
Facebook

c) “Album Expand”

Selectors
d) “Radio Box” &) “Check Box” >ption 2
J Option 3
10;«.0"3 |op|mnz |0p\lunﬁ52‘emﬁ Option b 5 Boons

Option 4

Scalar conrols

f) “Switch”
On Off

g) “Discrete Slider” h) “Continuous Slider”

1 pixel-wide docks

Menus

i) “Marking Menu” J) “Nested Menus”

Document .
Mopen T

*K

Figure 6. Examples for FlowBlocks versions of common
types of Ul widget:binary controls, selectors, scalar

controls and menus; Legend: :..i = rail, i = invisible Dock,
2 = invisible barrier.

handle before it
FlowBlocks also affords various menu styles (iFxample
(i) shows a menu in the form of a single Block. ©tiee user
touches the Block, arrows point into three distficections,
and activates invisible docks, as well as an ibigsbarrier
that keeps the Block within the allowed area. & tlser now
drags the Block in a direction beyond the boundshef
barrier, it will automatically drop over one of thavisible

be supported by FlowBlocks. We provide examples for Docks. Thus FlowBlocks are used to implement tradesc

three differentbinary controls slider-trigger controls (a),
similar to the “Unlock™slider in iOS; (b) “url” ke

independence and free-movement of a Marking Me®lL [2
These menus illustrate two more concepts that Flocks

navigation based on a “Navigation”-Dock and several can support: dynamically showing and hiding itsstiiaent

“URL"-Blocks; (c) an arrangement of two slider-tgers to
peek into and open a photo album — combining Flosid
widgets in this way might lend itself to playfulbgaching
multi-point gestures to novice users, similar to]. [8
FlowBlocks can support many types sflectorsthrough
the assembly of Blocks and Docks, as in examplgsrid
(e). While Docks usually are limited to one occupainey

can also be considered as containers in which akever

elements can be placed (&)iderscan be constructed by
constraining a handle-Block within a rectangularaansing
a barrier, and filling the area seamlessly with nagny
docks as there are steps (f, g, h). Further meshentan be
put into place to prevent the accidental adjustnmeing
slider: “gear-box-style” rails require the useffirst lift the

elements, as well as linking different states fraun model
to create more complex Ul behaviors.

Having demonstrated that FlowBlocks are logicatiynplete
across the functions of the WIMP GUI, we now adsltegir
design and integration into an application, as vesllthe
iterative design process that led to the developmEmany
of the design parameters we have discussed.

can be horizontally adjusted (Q).

——
|

elect a spegy

Pull out a species, and drop it in the
placeholder! g

Figure 7. The DeepTree exhibit (a) and FlowBlocks Ul (b, c, d, e, f).

APPLICATION AND EVALUATION
FlowBlocks is the outcome of a yearlong iterativesidn

The aim of the exhibit was to allow visitors to &qe
evolutionary concepts and to casually browse the for

process in which we implemented a Microsoft Surfaceany of the 70,000 species. The comparisons andisesar

application,DeepTree as part of a 3-year NSkformal
Science Educatioproject. We directly observed over 280
visitors at our DeepTree testing exhibit using 4albud
protocols. The DeepTree is an interactive and rboiltch
visual application that allows visitors to explotbe
evolutionary relationship and historical time ofeligence
of all life on earth. This relationship is visu@i in the
form of a large phylogenetic tree based on datanfthe
Tree of Life Web Project [2] with over 70.000 spes;iand

provide a focused activity, and a natural end paifiich is
recommended in public venues with large crowds.[36]

Method

As part of our iterative design process, we use&dRHTE
method (Rapid Iterative Testing and Evaluation J24]
throughout the vyear, testing the various stages of
development and alternative versions of FlowBloiclssde

one of the galleries at our partner museum. Thishatke
was well suited for our project for reasons of exa

20.000 internal nodes. Figure 7a shows DeepTreey|idity: we wished to carry out our evaluations time

application and its interface.

The main area shows the Tree of Life, as wellnagges
that mark the location of representative speciethéntree
(in the illustration, the root of the tree is vigibshowing
the three domains Bacteria, Eukaryotes and Archékssrs
can browse the tree of life with drag-based maitpanh,
dragging the tree downward to zoom-in towards #aés,
or upward towards the root to zoom-out.

At the right side of the screen, a scrolling imagel of 200
selected species-Blocks are shown. Visitors carllscr
through the image reel by standard flicking techeg] or
pull any species from the reel and move it aboeetthe
(cf. Fig. 7b). Here, the Blocks gain a “chord” thagually
links the block with the location of the specieghe tree, to
aid navigation and orientation (cf. Fig. 7c). Useas also
performFind andRelatequeries using our Flow Blocks UlI.
An “Action” marking menu on the right side provides
access toFind, Relate and Return (cf. Fig. 7d). Once
dragged into a direction and dropped, the actioncBl
morphs into a dialog which occupies the centraharkethe
display (c.f Fig. e). The dialog presents oRénd) or two

native setting where our exhibit will be installedien it is
finished, and with actual visitors that spontanépirgeract

with our system. Our partner museum has over 170,00
visitors per year from diverse backgrounds. Obgs@ma
were carried out during weekdays — typically atirag
school groups and summer camps — as well as on
weekends, when many families visit the museum.

RITE entails expert observations to drive quick igles
iterations. Both video footage and field notes were
collected. Institutional Review Board permission swa
granted to gather video recordings of visitors waithprior
written consent, however, a video-taping notice tade
present during observations, and collected footemead
only be used for internal analysis. Additionallp, @bserver
was physically present, shadowing the museum vsséod
taking notes from a discreet distance. After visitfinished
interacting with the DeepTree they were approadhethe
observer and given the opportunity to provide verba
feedback, which could inform our design iteratiofi®
reduce bias, an independent researcher who was not
involved in the development and design of FlowBkck
carried out all observations. The criteria usecevaluate

(Relat§ Docks, respectively. The user executes an actioneach RITE iteration were based on the three piltdrthe

by dragging species-Blocks into the Docks (cf. Fid).
When a species-Block is dropped into a Dock, thee tr
seamlessly zooms and pans to show an appropriate vi
(similar to a map flying to a new city). Foelate queries,
this is a view of the most recent common ancestioe (
point in the tree were both species separatedyyedlsas
visualizations of traits shared by the species Wwhiere
dropped-in to the Docks. ThReturn dialog contains a
trigger-slider (Fig. 6a), which flies the user backhe root
of the tree.

presented design space:

1. Createmutual awarenessand enableonflict negotiationbe it
verbal or physical.

2. Reduce (or eliminate) invocations of actions thtoagcidental
and uncoordinated touche®ise & interference

3. Visitors should learn to use FlowBlocks during tiygically
short) time they interact with the systel@afning to interack

New design iterations were begun as soon as inbeciear
that the design goal was not yet met, or when puggented
us from carrying out meaningful observations. Dgplents
between iterations varied in length and numbersefrs; but
were typically 1 week and approximately 20-40 obsdr
users. In total, 10 iterations were conducted dgemonths,
with over 280 visitors being observed. With thigagach,
our designs have been tested beyond most of treteep
“in the wild work [16, 23] in that we did not stop at one or
two rounds of evaluation. Instead, our designs hasen
both designed and evaluated in the wild.

Observations & Findings

The FlowBlocks Design Spaa@ndWidgets andApplication
sections describe the finished product of the Rif@cess, as
well as several design parameters which, whilerigleseful
in some contexts, did not suit the particular desij the
DeepTree exhibit. We now discuss observations gadhe
throughout the iterative design process, which Wil of
benefit to researchers and designers seeking enexnd
apply FlowBlocks, and to those designing Ul for veto
interaction in general.

Everyone can Learn to Drag

We found that nearly all users approach FlowBldackene

of two ways: some instantly start dragging Blocksuad
and dropping them into Docks. Particularly childssem to
require no instruction as to how FlowBlocks workhigh
indicates that they could infer the proper use ftmvisual
design of Blocks and Docks shown in Figure 7e. &hes
visuals were the 'lversion tested. The second category of
user starts by tapping Blocks or Docks. While & thoint,
feedforward can help the transition from tappinglitagging,
we went through several iterations for this traositto
happen quickly, and for all age groups. Initialye used
arrow guides that marked the potential routes frihm
dragged Blocks to the Docks, similar to those diesdrin
Octopocus [6]. The arrows persisted through the ddct
dragging and updated dynamically. While this effedy
encouraged hesitant visitors drag, for kids, whadifg drag

as many species over the tree as possible, thigitpe lead

to significant screen clutter, as many guides clagge parts
of the display space.

After several iterations, the final feedforward sisted of
four mechanisms. First, if species Blocks withie image
reel are tapped, for a brief moment the Block ighsly

nudged outwards, and an animated arrow appears {B)g
This arrow is relatively small, and disappears@msas the
Block is dragged. This was effective in initiatintpe

transition to drag, while not causing screen ctuttering

dragging, even when multiple elements where pulledat
the same time. Secondly, we used an animated vésfaet
of an ant-trail (cf. Fig. 7f) that surrounded bd@bcks and
Blocks — to convey their functional dependency.sTdiifect
was only visible when an action dialog was in teater of
the display (after being selected from the actioanu).

Thirdly, when tapping a dock, an animated hand shopy
performing a drag operation from the image re¢héDocks

(cf. Fig. 7f). The described feedforward was effectfor

transitioning most visitors to dragging, but paricly

seniors still showed hesitance and signs of confiusven
when all three mechanisms where active. Thus, wiedd
tooltip which was displayed when tapping either Biecks

or the Docks. The tooltip gives instruction in weit form,
and we found indicators in form of utterances dyrise that
this textual information was effective in instrungi adults
and seniors, while not hindering kids (who do @aid).

After these modifications, FlowBlocks were congigie
learned within the first few seconds of interactiéh groups
approaching the table, including school groups sewlors,
started carrying out actions almost immediatelyngidering
that Ul standards for crowd interaction do not et [40]
and that user intuition regarding the “proper” ugesuch
Uls widely differs [16, 17, 42], FlowBlock is efféee in
teaching a consistent operation of Ul widget toidewange
of users. We found less evidence that users notibed
second type of feedforward (shown when a Block is
dragged over a Dock). Users seemed willing to gy an
action without precise foreknowledge of the resilhis
may be less true in settings where errors areienstl

Little Effect of Noise and Fiddling

Our initial prototype of the exhibit was based ap-t
activated species-markers. Concurring with existing
findings [17, 23, 36], we quickly disqualified thisode of
invoking commands for our context, as accidentadl an
random jumps prevented constructive collaboration,
particularly in large groups. After introducing RiBlocks,

we did not observe any instances in which accidenta
touches triggered one of our actions, or in whicers
seemed to be confused about why a certain action
happened. Furthermore, active “fiddling” (childrguaickly
wiping their fingers across the species-Blocks)yvearely
caused issues other than multiple feedforward guide
cluttering the screen, which led to the described
feedforward designs. Overall, we were satisfiedhvitie
effectiveness of FlowBlocks regarding both accidkmts
well as uncoordinated touches, as we generally robde
constructive execution of actions despite intenserfierence.

Drag & Drop is Hard to Ignore and Easy to Prevent

We frequently observed occurrences in which usghere
verbally or physically reacted to another usertsoacprior

to a Block being dropped. We infer from this thaers
were generally aware of each other’s actions, aetily of
those actions that we intended to require con3éns was
apparent after some initial play and learning about
FlowBlocks, children would transition to more camstive
interaction with the system, and actively prevetieo
participants from executing interfering actions. rOu
observation concurred with existing work in thatygibal
strategies are commonly deployed by younger childsach
as blocking one another’s hands, pushing each atkay, or
covering Blocks or Docks to claim “territory” [182].

Many Solutions to Affect Awareness and Collaboratio n

Throughout our iterations, we tested various patarseof
FlowBlocks and their effect on mutual awarenessain
early version (Fig. 8a&b), both the Docks fbind and
Relate as well as the reset slider were visible atiales,
and placed in the top portion of the display. Whihés
created functional overview, we did notice occasiam

only the active Docks afnefunction — Findor Relate — are
visible at a time, and that both actions are presem the
same area on the screen. While this design eligintie
described awareness issues, the mechanism of a Dock
changing its functiorafter it has been originally occupied
with a Block appeared to be a separate sourcerdtision.
Visitors could not anticipate this conditional chanwhen

which visitors seemed surprised and unaware of rothemaking their initial choice, nor did our design wasly

visitors triggering aFind, Relate or Return then called
Rese), and at times uncertain about which functibmg or
Relat§ was currently executing. This was particularly
apparent in a version in which Find and Relate Bogkre
spatially separated (cf. Fig. b). Several iteratiaddressed
this issue. In one design, we tried to first onhow the
Find Dock (then “Jump To", cf. Fig. 8c), then, after
selecting and flying to a species, shoRe&ateDock (then
called “Compare With”, cf. Fig. 8d). Consequenthfter
selecting a species for th@nd-action, the species is now
the starting point for &Relatequery. In contrast to the
previous versions (Fig. 8a & b), this design magdie ghat

Figure 8. Selection of discarded
design iterations of the DeepTree Ul.

communicate this change of functional meaning (the
Dock’s label is occluded once occupied by a Blodigr
our exhibit, we dismissed conditionally changingcks,
however, they might be suitable for other scenarios

An alternative way of addressing the awarenessesssu
observed during earlier iterations (Fig. 8a&b), wasitilize
several of the described mechanisms to increase the
precursor necessary for each action (Fig. 8e). \ldeep
virtual walls so that the species Blocks could oily
dragged out of a small bottleneck at the centee. Jpfecies
docks forFind andRelateare hidden in “drawers", and first
have to be pulled out before being accessible (@ fof
Dock-activation). Additionally, we made thReset (or
Returr) action accessible via a slider, which when pulled
out starts to cover the whole screen in a red &initt The
slider has to be pulled across the whole screerreéledsed

in order for the Reset action to trigger.

In a study within one of our iterations in which we
compared both interfaces (Fig 8a & e), we foundsiheond
version reduced occurrences of confusion, by intcat
new constraints that made it harder for a drag ¢o g
unnoticed. However, it was also less popular farltad as
the effort of invoking an action was relatively higin
contrast, kids loved this version (cf. “Constrainss Play”).

In our final design, we utilized the described niagkmenu
and a positioning of the action dialogs in the eemtf the
display (Fig. 7b). This design had three benefitse
marking menu added another precursor to an action;
positioning the the action’s Docks into shared spéas
advocated by [25]) brought the Docks of an incoming
action to everyone’s attention; and showing onlykxof a
single function at a time reduced the confusioneoled
with earlier designs (Fig. 8a & b). The final Ulrg®mn
balanced suitability for a large age range with djoo
awareness characteristics.

Constraints vs. Play

By providing a set of loose movable tokens, FlowdRD
inherently lend themselves to playful interactidvte have
observed various forms of play with the DeepTree Ul
FlowBlocks originally implemented inertia, so theesies
Blocks could be flicked around the table, causing
particularly younger kids to “play hockey” (as ook our
younger visitors called it). Another popular ganmaoag
kids was to drag as many species blocks onto #e ds
possible. While this form of play seemed enjoyatte,
distracted from “deeper” engagement, particulartyr f
younger audiences.

As the DeepTree is focused on learning, we experiete
with constraints to “enforce order”, such as disapl
inertia, introducing the bottleneck (Fig. 8c), diedcing a
one-at-a-time order for pulling out species BlocWghile
these modifications reduced levels of play, therase of
such constraints resulted in slow and awkward &uion
experiences for adults. Likewise, we observed irtsta in
which thepresenceof constraints encouraged an “obstacle
course” style of play (e.g. routing a Block througte
mentioned bottleneck). Generally, we feel that aart
levels of play are inherent to FlowBlocks, whictsha be
considered by the Ul designer. In our final desiga,tried

to strike a balance of allowing certain levels tfypwhile
minimizing their impact on mature participants (see
“Managing Screen Clutter”). This can enable littids to
“participate” alongside more focused
interaction.

Managing Screen Clutter

One issue we have identified is that Blocks sdaitger
around the Display during usage (due to fiddlinglioected
use) can cause significant screen clutter. We Hauad
two mechanisms that deal with this issue: firspdBk that
are not dropped over a Dock can snap back to ¢nigjinal
location; secondly, Blocks can be configured t@agear if
they are not actively touched. In our design, tHecks
dragged onto the tree started to slowly fade ougrwhot
touched, and eventually move back to the reel. TWas
successful in reducing clutter.

Sequential vs. Parallel Interaction

CONCLUSION

Although the challenges of crowd interaction areledy
acknowledged, there are no general Ul frameworks or
design guidelines that can inform the concrete giesif
crowd Uls across a variety of application scenariosr
work starts to fill this gap by providing a genetdl| based
on the drag-and-drop primitive that is custom-taitbto the
challenges of crowd interaction. Our year-long atse
design and evaluation has established the fourgliadjties
of FlowBlocks — enabling crowd interaction in trecé of
chaos: its robustness regarding accidental toudras
interference, its ease of learning and use for dewi
spectrum of users, and its capability to providpliaption
designers with a variety of options to influence tmal
awareness, and facilitation of conflict managematie

and deeperpaye also shown that FlowBlocks provide common

interaction primitives that afford the functionabfability of
common Ul for multi-touch interaction.

While our insights have confirmed that drag-basédets
work well for crowd interaction for the DeepTree seum
exhibit, further studies are required to understaod best
FlowBlocks can be extended to support wider appdtioa
scenarios. Theoretically, FlowBlocks can supposgsktop-
grade” functionality in crowd interaction settinggiven
their coverage of existing Ul primitives. We cenlgi do
not envision to port complex applications, suchpasto
editing software, to crowd interaction. We do bedie
however, that there are many meaningful application
scenarios that benefit from more complex interactio
semantics compared to “picture-sharing” type oériattion

As described in the design space, FlowBlocks can b&ommonly found on surface computer. The DeepTréibitx

configured to enable parallel interaction or to ozoé
sequential execution of actions. While one of theious
strengths of multi-touch technology is its ability allow
multiple users to interact at the same time, weehaund
that sequential interaction also has merits. Famiag, it is
preferable for visitors working together ratherrthvaorking
side-by-side. At the macro level, the FlowBlocks Ul
enforces a parallel execution of actions in ordecreate a
shared context for all participants. However, & thicro-
level, phases of negotiation and simultaneous aetem
were frequently observed, both verbally,
facilitated through moving species Blocks close tihe
Docks to signal individual preference for which gaeter
to chose next. We frequently observed
interaction, and at occasion a modality of actod an

as well asvisitors to enjoy a meaningful and playful

serves as an example of more complex interactim fl

In museum and public contexts, Ul composition has
significant impact on whether visitors have an gajie
social experience in which they acquire knowledge,
leave frustrated and confused. Every effort torojze the

Ul can thus potentially have significant impact arwide
range of users. DeepTree will soon be deployedivia f
different museums, with an estimated 4.5 millioriako
visitors in the next year. FlowBlocks will serve ¢mable
learning
experience.

turn_basedACKNOWLEDGEM ENTS

We thank the Harvard Museum of Natural History, &sd

Observer(s). However, both modes of Operating theDireCtor of EXhibitionS, Janis SaCCO, for a”oW”ﬂg to

DeepTree were successful in engaging participamts i
shared learning activity.

In summary, we found that FlowBlocks, in their et
design, and with various parameters, can suppuosriaty
of different designs that allow Ul designers toiady
influence how certain actions are perceived, arabkenthe
creation of successful, crowd-friendly Ul.

conduct this research in their galleries. We alsmk Kay
Hofmeester and Paul Hoover, formerly of the Micfoso
Surface team, for their discussion on drag & drapeul
widgets. We thank the National Science Foundation f
their support of this project (DRL-1010889). Anyimipns,
findings and conclusions or recommendations expregs
this material are those of the authors and do aoéssarily
reflect the views of the National Science Foundatio

REFERENCES
1. Microsoft Surface. http://www.microsoft.com/surface

2. http://www.tolweb.org
3. http:/mww.ideum.com/interactive-exhibits/
4

. Antle A. Futura: design for collaborative learnizngd game play
on a multi-touch digital tabletofEl'11, 93-100.

5. Apitz, G. et al. CrossY: a crossing-based drawjnglieation..
UIST '043-12.

6. Bau, O. et al. OctoPocus: a dynamic guide for iegrgesture-
based command setdlST '08 37-46.

7. Belatar, M. et al. Sketched menus and iconic gestu
techniques designed in the context of shareal#efanes.|ITS
'10, 143 — 146.

8. Bragdon, A. et al. Gesture play: motivating onliygsture
learning with fun, positive reinforcement and plgsi
metaphorslTS '1Q 39-48.

9. Buxton, W. A three-state model of graphical ingNTERACT
'90, 449-456.

10.Cohen, J. et al. Logjam: a tangible multi-persdarface for
video logging. In Proc. CHI '99, 128-135.

11.Freeman, D. et al. 2009. ShadowGuides: visualizatior in-
situ learning of multi-touch and whole-hand gestures '09
165-172.

12. Frisch, M. Et al. Grids & guides: multi-touch layand
alignment toolsCHI '11, 1615-1618.

13. Gutwin, C. et al. A descriptive framework of workse
awareness for real-time groupwa@SCW 2002, 411 — 446.

14.Hartmann, B. Pictionaire: supporting coltmhtive design work
by integrating physical and digitadrtifacts. CSCW '10 421-
424,

15. Hinrichs, U. et al. Emdialog: Bringing informatissualization
into the museumEEE ToV&CG 14(6):1181-1188, 2008.

16. Hinrichs, U. et al. Gestures in the wild: Studymglti-touch
gesture sequences on interactive tabletop exhitits2011,
3023-3032.

17.Hornecker, E. | dont understand it either, bus it@ol-visitor
interactions with a multi-touch table in a musedGMBLETOP
2008 113-120.

18. Hornecker, E. Interactions around a contextuallpesded
systemTEI '10,169 — 176.

19. Jacucci, G. et al. Worlds of information: designiag
engagement at a public multi-touch display! '10, 2267—
2276.

20. Kurtenbach, G. et al. 1994. User learning andoperénce with
marking menus. CHI'94, 258-264.

21.Lepinski, G.J. et al. The Design and EvaluatioMaftitouch
Marking MenusCHI '10, 2233 — 2242.

22.Marshall, P. et al. Fighting for control: childreembodied

interactions when using physical and digital repnéstions. In
CHI 09, 2149 — 2152.

23.Marshall, P. et al. Rethinking’multi-user’: antime-wild study
of how groups approach a walk-up-and-use tabletigpface. In
CHI '11, 3033--3042 2011.

24.Medlock, M. et al. The Rapid Iterative Test and IHgton
Method: Better Products in Less Tin@ost Justifying Usability,
An Update for the Internet AgBias, R. and Mayhew, D. (eds).
Boston, Morgan Kaufmann, 2005.

25.Morris, M.R. et al. Beyond social protocols: Muler
coordination policies for co-located groupwaB&CW'04262 —
265.

26.Morris, M.R. et al. Cooperative gestures: multinugestural
interactions for co-located groupwa@HI'06 1201 — 1210.

27.Moscovich, T. 2009. Contact area interaction wiittirsy
widgets.UIST '09 13-22.

28.0Ilson, I.C. et al. "It's just a toolbar!" Using Txinles to Help
Children Manage Conflict Around a Multi-Touch Tétole.
TEI'11, 29-36.

29.Peltonen, P. et al. It's mine, don't touch!: intgrans at a large
multi-touch display in a city centr€HI'08 1285-1294.

30. Schmidt, H. et al. memory [en] codebuilding a alies
memory within a tabletop installatioRroc. CAg Eurographics
Association, 135-142, 2007.

31.Schmidt, D. et al. IdLenses: Dynamic personal apeashared
surfacesITS 2010131-134.

32.Shen, C. et al. DiamondSpin: An Extensible TodtkitAround-
the-Table InteractiorCHI'04, 167-174.

33.Scott, S. et al. 2009. Social immersive media: yingsbest
practices for multi-user interactive camera/prajeetxhibits.
CHI '09, 1447-1456.

34.Shaer, O. et al. The TAC Paradigm: Specifying Talediser
Interfaces. PUC, vol. 8, no. 5, pp. 359-369, S2@d4.

35.Sulaiman, N. S. et al. Attribute Gate8ST 200857 — 66.

36.Ryall, K. et al. Experiences with and observatiohdirect-
touch tabletopsTabletop 89-96.

37.Ullmer, B., Ishii, H., and Glas, D. mediaBlocksygltal
containers, transports, and controls for onlineiendd Proc.
SIGGRAPH '98, 379-386.

38. Ullmer, B., et al. Token+Constraint Systems for Jiafe
Interaction with Digital Information. ToCHI 2005pp81-118.

39. Weiss, M. et al. 2009. SLAP widgets: bridging tla@ dpetween
virtual and physical controls on tableto@$dl '09, 481-490.

40. Wigdor, D., Wixon, DBrave NUI World | Designing Natural
User Interfaces for Touch and Gestukorgan Kaufmann,
2010.

41.Wilson, A. et al. 2008. Bringing physics to thefaoe.UIST
'08, 67-76.

42.Wobbrock, J. et al. 2009. User-defined gesturesudace
computing.CHI '09, 1083-1092.

