
TunePad Playbooks
Designing Computational Notebooks for Creative Music Coding

Michael S. Horn
Northwestern University, Computer

Science and Learning Sciences
michael-horn@northwestern.edu

Amartya Banerjee
Northwestern University, Computer

Science and Learning Sciences
amartya@northwestern.edu

Matthew P. Brucker
Northwestern University, Computer

Science and Learning Sciences
matthewbrucker2025@u.northwestern.edu

ABSTRACT
This paper describes the design of an online learning platform that
empowers musical creation and performance with Python code. For
this platform we have developed an innovative computational note-
book paradigm that we call TunePad playbooks. While playbooks
borrow ideas from popular computational notebooks like Jupyter,
we have designed them from the ground up to support creative mu-
sical expression including live performances. After discussing our
design principles and features, we share findings from a series of
artifact-centered interviews conducted with experienced TunePad
users. Our results show how systems like ours might flexibly sup-
port a variety of creative workflows, while suggesting opportunities
for future work in this area.

CCS CONCEPTS
• Human-centered computing; • Human computer interac-
tion (HCI);

KEYWORDS
Computational literacy, computational notebooks, music, design,
playbooks
ACM Reference Format:
Michael S. Horn, Amartya Banerjee, and Matthew P. Brucker. 2022. TunePad
Playbooks: Designing Computational Notebooks for Creative Music Coding.
In CHI Conference on Human Factors in Computing Systems (CHI ’22), April
29–May 05, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3491102.3502021

1 INTRODUCTION
The HCI community has long been interested in computational
tools to support and expand human creativity (e.g. [28]). Among
the many creative domains of interest, music has been one of the
most enduring and most transformed by digital technologies, es-
pecially over the past 20-30 years. A growing area of research in
this larger domain is the intersection of music and computer pro-
gramming languages [16, 31]. Much in the way that sheet music
is a language for expressing musical ideas, code (with its creative,
mathematical, and algorithmic affordances) can also be a powerful

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3502021

medium for composing and performing music. Early explorations
in music composition on mainframe computers in the 1950s and
60s have given way to an explosion of languages and systems that
elevate coding to the level of performance art [5, 16, 31, 36]. For the
most part, research in this area has emphasized programming lan-
guage design—what are the affordances of computational languages
for thinking about and expressing musical ideas? However, there
has been much less emphasis on the holistic design of these sys-
tems from an HCI perspective—how do we design tools to effectively
support creative workflows that integrate multiple tools, representa-
tions, and collaborative practices in the context of broader creative
ecosystems?

In this paper we share the design of a novel learning platform
called TunePad that supports musical composition and performance
using the Python programming language. TunePad has been used
by several hundred students in afterschool programs and summer
camps1 over the past four years. For this platform, we have devel-
oped an innovative computational notebook paradigm that we call
playbooks2 (Figure 1). While playbooks borrow ideas from other
computational notebook systems such as Jupyter and Google Colab-
oratory [15], we have designed them from the ground up to support
creative musical expression including live performances. The end
result is something quite different in functionality and purpose.
After discussing our design principles and features, we share find-
ings from a series of artifact-centered interviews conducted with
experienced users. Our results show how systems like TunePad
playbooks might support a variety of creative workflows, while
suggesting opportunities for future work in this area.

2 BACKGROUND
2.1 Related work in music and coding
There is a rich history of computer programming languages and en-
vironments designed to support musical expression [16, 31]. Wang
describes three eras of music programming beginning with a family
of languages collectively known as MUSIC-N that allowed program-
mers to both define sounds (how digital instruments generate audio)
and scores (what instruments play). Direct descendants of MUSIC-N
include languages such as Common Lisp Music [30], Nyquist [29],
and Csound [17]. As computer processing power has increased, a
number of influential real-time systems have emerged including
graphical, dataflow languages such as Max/MSP and Pure Data
[20, 23], and text-based environments such as SuperCollider [35]
and ChucK [32]. Wang’s third era of music programming describes

1See [12] for a paper that briefly describes findings from a summer camp program
with TunePad.
2The term playbook combines the idea of “dropping the beat” or “dropping an album”
with computational notebooks.

https://doi.org/10.1145/3491102.3502021
https://doi.org/10.1145/3491102.3502021

CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA Mike Horn et al.

Figure 1: A TunePad playbook with text cells (the second in a compact state), a code cell, and interactive drum, bass and synth
cells.

the current proliferation of languages and systems to support live
performance [1, 31], reflected in communities such as toplap.org.

Researchers have also been interested in the educational possibil-
ities created through the combination of music and computer code.
Here the emphasis is on simplified programming constructs and
more accessible and/or popular languages such as Python, Ruby,
Java, and blocks-based environments such as Scratch [25] and Mi-
crosoft’s MakeCode. Influential systems in the educational space
include Music Logo and Impromptu developed by Bamberger and
colleagues [4]. Music Logo was a minimal addition to the Logo
programming language that provided built-in functions for play-
ing musical notes. Though the additions were relatively simple,

Bamberger’s research was able to demonstrate a rich conceptual
space that these new capabilities opened for learners [3, 4]. Other
educational environments such as Scratch and Microsoft’s Make-
Code also provide basic building blocks for music and sound effects.
Because these platforms are accessible and widely used, they open
music making capabilities to a broad audience. However, in a recent
critique, Payne and Ruthmann [22] identify several limitations in
the use of Scratch for teaching music for novice learners. They point
out that for learners who aren’t familiar with music theory, it can be
difficult to compose at the level of notes and sounds. Bamberger cri-
tiqued her own Music Logo language for much the same reason [4].
These factors, coupled with technical issues requiring unintuitive

TunePad Playbooks CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA

workarounds to get multiple tracks to play synchronously, result in
serious hurdles for novice learners to make music. Although we do
not consider TunePad to be a response to all of the issues raised by
Payne and Ruthmann, we do see it as a more serious music making
environment that is still accessible to learners.

Other systems such as Bamberger’s Impromptu [4] and the pop-
ular EarSketch platform created by researchers at the Georgia In-
stitute of Technology [10], have emphasized engaging students in
musical creation “without the added barrier of entry of learning
music theory about harmony, melody, chord progressions” [18].
With EarSketch learners use either Python or JavaScript to remix
pre-produced musical samples into full-length songs in a digital
audio workspace (DAW). Quantitative studies with EarSketch have
included over 500 students and have shown statistically significant
increases in intention to persist and attitudes toward computing,
typically with medium or large effect sizes [10, 18, 33]. TunePad
was developed in collaboration with the EarSketch team to be a
companion to environment, but TunePad’s focus is more on music
composition from notes and beats rather than from pre-recorded
samples.

Perhaps the most closely related system to TunePad is the pop-
ular Sonic Pi platform [1], created by Sam Aaron and colleagues
and first released in 2012. Sonic Pi ships with the Raspberry Pi
platform and can also be downloaded for free for Windows and
Mac OS. Sonic Pi is a domain specific IDE (Integrated Development
Environment) featuring a text editor with language support, mu-
sic visualization capabilities, and built-in documentation. It uses a
SuperCollider [35] server on the backend to generate high-quality,
real-time audio with live coding capabilities. The Sonic Pi language
is related to Ruby and supports multi-threaded constructs to layer
audio together to create complex compositions.

While TunePad shares some of the features of Sonic Pi, it dif-
fers along several dimensions. On a superficial level, TunePad is a
browser-based app instead of installed software. This offers advan-
tages for schools and other educational programs that use Chrome-
books or that face restrictions installing software. Themore substan-
tive differences, however, have to do with how code is organized
and musically synchronized. Sonic Pi uses a parallel processing
model where different musical parts are structured as threads that
can be synchronized with message passing constructs. TunePad,
instead uses a model of multiple musical instruments organized as
cells in a notebook (see the Design Overview section for details).
The instruments can be played manually (with a mouse, keyboard,
or MIDI device) or they can be programmed with short Python
scripts coded in the cell. Another major difference from a user-
experience perspective is that music in TunePad is visualized at the
level of an individual cell in the form of an interactive piano roll,
waveform, or music notation (see Figure 2). This is in contrast to
Sonic Pi where the real-time audio is visualized at the level of the
entire set of running threads.

2.2 Computational Notebooks
Computational notebooks such as Jupyter [15] and Google Col-
laboratory have become pervasive in data science and research
communities over the past decade [13]. The standard notebook
architecture is based on a read-eval-print loop (REPL) workflow

common with scripting languages such as Python. From the user’s
perspective, notebooks take the form of vertically arranged cells in
a browser window that can contain code, rich text, multimedia, data,
and interactive plots and visualizations. Code cells are processed by
the notebook’s kernel, which maintains the shared runtime state.
Code cells have an implied top-to-bottom ordering, meaning that
code near the top of the page is typically intended to be run before
code below it. In practice, however, code cells can be run in any or-
der leading to “enormous” problems for novice users in educational
settings who may not fully understand the hidden runtime state
of the notebook [8, 13]. Johnson [13] summarizes several pitfalls
and benefits of computational notebooks for use in post-secondary
classrooms. Among the pitfalls: notebooks are difficult for students
to install due to the server/kernel architecture; the hidden runtime
state may be unpredictable if cells are executed in an arbitrary
order; notebooks offer limited debugging features; and there are
security issues inherent in running and sharing notebooks. For
Johnson these concerns are outweighed by the pedagogical benefits
that come with a narrative structure that facilitates explanations
and worked examples.

While TunePad playbooks are superficially similar to Jupyter-
style notebooks, they are architecturally different (Table 1). We
describe playbooks in more detail below, but the main difference
is that playbook cells share a lexical namespace instead of a run-
time space. The implication of this architecture is that there is no
need for a shared kernel or locally-installed client-server software.
It also means that dependencies between cells become more ex-
plicit and there is no hidden runtime state. Of course, the playbook
architecture comes with tradeoffs. The lack of a shared runtime
environment and data flow between cells makes playbooks imprac-
tical for data science applications. However, we will argue that this
tradeoff optimizes music creation.

There are other examples of music creation using computational
notebooks3. The Jupylet project, in particular, uses a Python port
of Sonic Pi in combination with Jupyter-style notebooks. It is not
surprising that people have explored music with notebooks. How-
ever, to our knowledge, TunePad is the first platform to create a
serious design combining computational notebooks with music that
addresses the limitations of standard notebook paradigms.

3 DESIGN PRINCIPLES
TunePad is influenced by a long history of Constructionist learning
environments that feature programming as a medium for creation
(e.g. [1, 9, 21, 25, 34]). A broad goal of this project is to provide au-
thentic learning experiences. However, the term authentic is neither
binary nor uni-dimensional. Learning experiences can have degrees
of authenticity along dimensions such as fidelity to professional
tools and practice, and the extent to which activities are personally
meaningful to learners [19, 27]. There are also cultural dimensions
to authenticity, meaning the degree to which activities are cultur-
ally resonant and true to learners’ cultural identities. Inauthentic
experiences can feel fake, culturally irrelevant, or worse. Following
[27] we strive to be authentic in the tools of practice for both coding
and music, leading to six broad design principles:

3See https://blog.changshe.io/making-music-in-a-jupyter-notebook-19c57791e636
and the Jupylet project https://jupylet.readthedocs.io

https://blog.changshe.io/making-music-in-a-jupyter-notebook-19c57791e636
https://jupylet.readthedocs.io

CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA Mike Horn et al.

Table 1: Key differences between Jupyter-style computational notebooks and TunePad playbooks

Jupyter-Style Notebooks TunePad playbooks

Optimized for data science → Optimized for music and art
Optimized for professionals → Optimized for learners
Designed for REPL workflows → Designed for creative workflows
Shared runtime state (kernel) → Shared lexical state
Can require local installation → No installation needed
Static output → Interactive output
Not “performable” → Performable artifact

3.1 Playful Interaction First
Provide a playful, exploratory environment that encourages learn-
ers to experiment with sounds and music without feeling over-
whelmed by intimidating technical details. In other words, we hope
that learners will first see TunePad as a platform for creative ex-
pression and later recognize the role of code in empowering music.

3.2 From Playful Exploration to Deep Dive
As with Scratch [25] and Logo [21] before it, we are committed to
the ideal of “low floors, wide walls, and high ceilings” [24]. We aim
to make it easy for learners to get started but also support them
as they progress towards expertise when they are motivated and
ready. Because the underlying language is Python, there’s a high
ceiling when it comes to the complexity of programs that can be
created.

3.3 Music that Sounds Good
Provide a satisfyingly rich world of music and code to explore. Here
we are fortunate to have access to the Web Audio API built into
all modern web browsers. Web Audio aims to support professional
grade audio production in the browser, giving us the ability to
design sophisticated synthesizer patches, filters, and effects. We
have also focused on creating high quality music with tools that
closely mirror real-world audio production software.

3.4 Performability (Live Coding)
Existing live coding environments such as Sonic Pi [1] make it
possible for users to develop musical compositions in real time as
part of a live performance. In this sense, performance artists are
creating compositions that showcase not only their music ability
but also their technical prowess. We designed TunePad to provide
similar live coding features described below.

3.5 Shareability and Collaboration
A cornerstone of Constructionist learning environments is the abil-
ity to share personally meaningful artifacts with others. This has
motivated us to make sharing and remixing as easy as possible.
TunePad playbooks can be exported to MP3, WAV and MIDI, and
the ability to add text and multimedia cells to projects (described be-
low) is intended to support creative expression with artwork, lyrics,
poetry, and personal reflections. Similar to the Scratch community
[25], our aim is for users to create their own tutorials to promote a
culture of teaching from one another in the spirit of computational

participation [11]. We also support real-time collaboration with
other creators in the same project.

3.6 Coding Amplifies Creativity
It is essential for us that coding is seen as an empowering language
of musical expression that allows learners to go above and beyond
what is possible with typical music production tools. There is a
real risk (especially for beginners) that coding ends up hindering
musical expression. For example, step sequencers make it trivial to
play around with different beat patterns without coding anything.
Further, if users are accustomed to reading sheet music or other
standard musical notations, the transition to code can feel daunting
and frustrating.

4 DESIGN OVERVIEW
TunePad is a free, online platform for creating music with Python
code. The platform includes learning resources such as step-by-step
tutorials, covers of popular songs, and a library of pre-coded sam-
ples such as drum loops and synth pads. Projects in TunePad are
organized in the form of computational notebooks called playbooks
(Figure 1) that consist of an arbitrary number of cells containing
Python code, playable musical instruments, rich text, and multime-
dia elements such as images and video. Instruments (e.g., Figure 2,
bottom) can be played with the mouse, keyboard, or attached MIDI
device.

They can also be programmed with short Python scripts (Figure
2, middle). The resulting audio will automatically loop rounding
up to the nearest measure length. Playbooks synchronize the audio
of multiple instruments at the beat and measure level according to
the project’s time signature.

The script in Figure 2 plays a simple run of hi-hats punctuated
with random stutter steps (a common pattern in popular music).
This code includes a for-loop that sets the basic repeated pattern,
and a conditional statement that decides whether to play a single 8th
note or two 16th notes based on a random number. These 10 lines
of code convey underlying patterns that can be more difficult to see
with more traditional musical notation systems. Specifically, there
is a foundational pattern that should be accented with seemingly
random stutter steps that occur roughly two times out of ten.

Playbooks automatically evaluate code changes on the client
side in the background whenever there are edits and the cursor is
moved to a different line. When a change is made, the piano roll
immediately refreshes to provide a visual cue for the updates, and

TunePad Playbooks CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA

Figure 2: In TunePad, each cell may contain Python code
(middle) that is tightly integrated with interactive piano
rolls (top) and playable instruments (bottom).

the resulting audio will be cued to start at the beginning of the next
loop.

The combination of multimedia elements and rich text in com-
putational notebooks makes it easy to build interactive tutorials
where learners can run code in context and then tinker with the
scripts in individual cells or remix a project in its entirety [13]. With
TunePad this makes it possible to add lyrics, personally meaningful
images, or embedded videos. For example, when creating a cover,
users will often embed a YouTube video to show what the original
song sounds like.

4.1 Independent evaluation and cell scope
Playbook cells share a lexical namespace (through Python import
statements) instead of a runtime space. For example, a learner might
have one cell called groove that defines variables and functions.
kick = 0
hat = 4
snare = 2
def groove():

playNote(kick, beats = 0.5)
playNote(hat, beats = 0.5)
playNote(snare, beats = 0.5)

playNote(hat, beats = 0.5)
playNote(kick, beats = 0.5)
playNote([kick, hat], beats = 0.5)
playNote(snare, beats = 0.5)
playNote(hat, beats = 0.5)

The other cells in the playbook can then import and use this
code:
from groove import *
groove()

The syntax is the same as standard Python, with the name of
each cell becoming the module name used for imports. If a cell
redefines variables or functions, those changes are local to that
cell. The implication of this architecture is that there is no need for
a shared kernel or locally installed client-server software. It also
means that dependencies between cells become explicit through
import statements in code and that there is no hidden runtime state
that can change in unpredictable ways depending on the order in
which cells are run. This helps simplify some of the more confusing
aspects of Jupyter-style notebooks for novices.

There is an added advantage that syntax errors in one instru-
ment will not stop playback of the rest of the project. Unless code
is imported from other cells, mistakes in one cell will not bog down
other parts of the composition. We think this helps creators tinker
with code fluidly, without undue concern about ripple effects. Inde-
pendent evaluation is especially helpful when multiple people are
collaborating on a shared project; a syntax error in one person’s
cell won’t break the music output for the others.

4.2 Support for live coding
TunePad adopts concepts from computational notebooks but also
adds the ability to perform and improvise music in real time. Live
Coding refers to the real-time editing of computer code to generate
music as part of a live performance [1, 5, 9, 36]. In this way, the
performance is as much about the resulting music as it is the per-
formers’ technical virtuosity. Performance is no longer just about
the end product (the music); it is as much about exposing the pro-
cess of making music – the algorithms and computation behind it –
for everyone to see [9, 36]. Live coding in TunePad is made possible
because: a) cells can be run independently to generate music in
layers; b) multiple instruments are automatically synchronized by
beat and measure; c) changes in code are automatically recompiled
in the background without having to pause and restart the resulting
music; d) and, changes to the audio output are cued to begin at the
start of the next loop (similar to Sonic Pi’s live_loop construct [1]),
which means that musical changes are incorporated seamlessly
without stopping the beat. The video figure shows examples of live
coding with TunePad.

4.3 Collaborative editing & pair programming
Music is inherently collaborative. We have been inspired by
community-centered participation structures (drum circles, peace
circles, improvisational performance, and jam sessions) to engineer
playbooks so that multiple participants can simultaneously con-
tribute to shared online compositions by writing computer code
to play virtual musical instruments. Participants can edit code in
the same cell, or they can each add their own musical instrument

CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA Mike Horn et al.

Figure 3: Enabling the "Record" button while playing an instrument (in this case, a synth) generates Python code that can
serve as a helpful and quick starting point.

to the same project. Imagine one participant adds a drum cell, an-
other adds a bass, and a third adds a piano keyboard. Compositions
emerge in real time through the collective efforts of participants
who learn to listen to one another and work together as a team. The
distributed, collaborative features of playbooks have also proven
valuable during online learning in the pandemic where students
in a virtual session can all create cells in the same project, and the
instructor can see everyone’s work and provide help in real time
without having to change whose screen is being shared.

The workflow for collaborative music making on TunePad looks
something like this: a learner creates a new playbook and marks it
"Public" to generate a unique and shareable link. Using that shared
link, other learners can join that playbook and can see (and hear)
the work of their peers emerge in real-time. In terms of the col-
laborative infrastructure, this works similar to Google Docs. By
synchronizing code changes from multiple creators in a shared
project, we hope to achieve the feel of a live jam session that retains
a large degree of creativity and playfulness. We see similar ideas in
platforms like Scratch remixes [26] where students share their code
with one another. However, we think that collaboration on shared
projects creates a dramatically different form of participation and
learning. Another notable aspect of this collaborative workflow
is that it affords pair programming and spectating. Learners can
choose to simply watch their peers (or an instructor) while they
are composing music.

4.4 Multiple representations of music
For instrument cells, the Python code (Figure 2, middle) is closely
coupled with the piano roll (top) and the playable musical instru-
ment (bottom). The playable instrument has a “record” feature that
can generate Python code corresponding to the notes currently
being played (Figure 3). The piano roll can be swapped out for a
waveform visualization or standard sheet music notation (Figure 4).

As a learner writes or edits a line of code, the changes are reflected
in the piano roll instantaneously. This closely coupled visual rep-
resentation not only provides immediate feedback, but also aids
debugging—hovering over the piano roll reveals the note being
played as well as the line of code responsible for that note—and
encourages experimentation. In general, we made a conscious ef-
fort to bring in forms and conventions of digital audio workstation
(DAW) software such as Ableton, Logic, and GarageBand.

4.5 Debugging features
Playbook instruments provide access to a console for debug logs as
well as the ability to trace through lines of code, one at a time. Each
time a note or rest is added to the code, we create an automatic
breakpoint for code tracing. The Step button built into instrument
cells will run code to the next breakpoint, playing notes along
the way. In addition to code debugging, the interactive piano roll
helps with ’musical’ debugging. Creators can move the playhead
on the piano roll to highlight the line of code that is responsible
for a particular note (or notes), making it easier to edit or debug
the line in question. Using online programming resources such as
Stack Overflow is a useful skill for learners to pick up. Whenever
there is an error or exception in a cell, the error message/window
includes a direct link to Stack Overflow results from both Google
and DuckDuckGo.

4.6 Coded sound library
TunePad includes a library of coded musical samples that can be
added to a playbook. The mechanism is evocative of most audio
production tools that have pre-recorded sound-loops or samples
with one crucial difference: these samples are created with Python
code that gets added as a new cell in a project. The coded samples
support learning by example and can be easily ’remixed’ by editing
or adding new lines of code.

TunePad Playbooks CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA

Figure 4: Multiple representations: piano roll (left), waveform (middle), and sheet music.

Figure 5: Recording Studio: creators can record audio samples and manipulate them before using them in a cell or pro-
grammable instrument. (right) DJ Tools: virtual turntable to mix the tracks in a playbook.

4.7 Authentic music production tools
TunePad positions music and coding as equal peers – in particular
we not only consider how music production can be a context for
developing computational literacy, but we also explore how coding
can be seen in terms of practices normally associated with making
music. Some examples of the music production tools built into
TunePad are:

4.7.1 Recording Studio. TunePad has a built-in recording studio.
Using a microphone as an input, creators can record short samples,
trim or edit the sample by changing its volume and pitch, add a
reverb, or tinker with the low, mid or high frequencies (Figure
5, left). Once this sample is edited, it can be used within a cell
programmatically with a playSound function call.

4.7.2 Mixer and DJ Tools. TunePad includes mixing tools and a
virtual turntable (Figure 5, right) that lets creators mix the tracks
they have programmed. They can create flowing transitions, fade-
in and fade-out tracks, change the tempo on the fly, and change
the gain and equalizer settings in real time. Anyone unfamiliar
with music mixing tools can learn the basics, while those already
familiar with virtual turntables would feel right at home. In live
coding scenarios, the DJ tools afford yet another avenue for creative
expression.

4.8 Multiple voices for each instrument
Most music production tools have a rich set of instruments and
voices to choose from. In TunePad’s case, we made it easy for a cre-
ator to change not only the sound from a programmable instrument,
but also change the instrument itself without having to change the
code. For example, in Figure 6, changing the snare sound from a
Rock Drumkit to an 808 Drumkit is just a couple of clicks away. As
we discuss later, this design feature is commonly used by creators

trying to compose covers of popular songs and get it to sound as
close to the original as possible.

5 SOFTWARE ARCHITECTURE AND
IMPLEMENTATION

Figure 7 is a high-level software system diagramwith two connected
users working on a single Playbook; one tinkering with a drum,
and another working on a synth. On the client side, TunePad uses
the Dart programming language (dartlang.org) along with standard
web technologies (HTML, CSS, JavaScript, and the DOM). We use
the Skulpt library (skulpt.org) to compile Python scripts on the
client-side in real time as the user makes edits. Our music functions
(e.g. playNote and rest) generate print statements with stringified
JSON objects. The output from a Python script then allows

us to produce a musical trace that we iterate through to gener-
ate audio events for the Web Audio API. We send other Python
print statement output to a Python console visible to the users.
We intercept print statements as a Python script is being compiled
as a means to prevent accidental infinite loops that would hang
the browser. In other words, we can halt a program that generates
too many output lines (as determined by a configurable thresh-
old value). Audio playback is based on the Web Audio framework,
which provides very precise timing. Web Audio also allows for so-
phisticated effects, filters, timing envelopes (e.g. ADSR envelopes),
and modular synthesis. We expose some of these features through
language-level constructs. Our future work plan involves expos-
ing more of these features to users through additional language
functions. To support collaborative editing, we use a WebSocket
server that sends messages corresponding to the current state of
the playbook to each connected client (i.e. user).

CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA Mike Horn et al.

Figure 6: A drop-down menu lets creators change the type of instrument or the sound/voice itself without changing the code.
In this case, a synth is replaced by an 808 drumkit, which in turn is swapped out for a rock drumkit.

Figure 7: TunePad’s software architecture and core technologies.

6 EXAMPLES OF CREATIVE PRODUCTION
WITH TUNEPAD

TunePad has been used by several hundred students in afterschool
programs and summer camps over the past four years and has
undergone several major design revisions. To enable new forms of
creative production that blends computational literacy and music,
TunePad’s design had to go beyond providing a “low floor” for
novices and afford rich forms of production for learners with more
coding or music production experience (i.e. provide a “high ceiling”).
For the purposes of this paper, we have chosen to report on how
TunePad’s design works with more advanced learners and their
creative practices.

6.1 Study population
New learners are introduced to TunePad in a variety of settings,
including schools, libraries, community and youth centers. Over
the project’s lifetime, we have hired dozens of facilitators to help
new learners. We refer to these facilitators as “coaches” in order
to emphasize their role as mentors and guides for program partici-
pants. Most of our coaches are undergraduate Computer Science
students, and a significant proportion of them are also enrolled
in music composition or performance programs, or they play a
musical instrument. While most had prior experience with Python
programming, all were new to the TunePad platform.

We iteratively developed a set of curricula for TunePad by work-
ing closely with the coaches. Many coaches also developed their

TunePad Playbooks CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA

own activities and exercises specific to the groups they taught, and
they contributed to a library of compositions (mostly covers of ex-
isting songs) featured on the TunePad website for younger students
to learn from. This dynamic was evocative of prior research on near-
peer mentors in computer science education [6]; mentors’ coding
projects motivated younger students and it showed them “what
could be done” with computer programming. Similarly, Kafai et al.’s
[14] examination of the experiences of STEM near-peer mentors
presented a fluid picture of mentorship whereby mentors took on
dual roles as teachers and learners. We view coaches’ experiments
in music-making integral to developing a creative community that
motivates future learners.

6.2 Data collection and methods
To illustrate the creative affordances of TunePad, we interviewed six
participants – 2 women and 4 men – from our most recent cohort of
coaches. All of the participants were undergraduate students who
had “coached” younger learners in TunePad camps during spring
and summer of 2021—examples include a weekly virtual camp for
middle school students, virtual summer programming for youth
ages 18-24, or a weeklong in-person summer camp. All coaches had
taken at least one undergraduate-level computer science class.

In terms of data, we looked at the coaches’ TunePad playbooks
as well as video and audio recordings of semi-structured interviews
that were conducted virtually. These coach interviews were based
on Brennan and Resnick’s artifact-based interview format [7], mod-
ified to reveal their music-making and computational workflow.
Participants were asked to recreate a song they had previously
composed in TunePad while staying as close to their original com-
position and arrangement process as possible. Participants were
free to use any supporting materials they wished, including listen-
ing to the original song (all participants’ chosen songs were covers),
using sheet music, or referencing their original TunePad playbook.
We think that recreating a song helped highlight specific inter-
actions with the platform and let participants demonstrate their
range of creative expression without the overhead (or pressure) of
having to start from scratch in a time constrained interview. Inter-
views were transcribed, and video recordings were coded by the
research team. A codebook was developed iteratively based on re-
peated viewings of interviews and broadly classified into two types
of codes: specific interactions, i.e., moments where participants
make use of a specific design feature of TunePad, and higher-level
interactions that did not directly correspond to a specific design
feature. The codes were refined by the research team to highlight
recurrent themes that we describe below. Methodologically, we
started with several rounds of open coding across all participants
to develop a codebook consisting of around 15 codes. This first
round of coding focused on trying to broadly characterize coaches’
creative processes. Comparing similarities and differences among
coaches through extensive discussion helped us consolidate codes
and move towards themes. Our analytical focus, in turn, narrowed
to focus on understanding how coaches brought in and coordinated
various tools of production and representations of music. We also
attended to easier and harder parts of their process and their stated
goals for creating music with the platform.

7 RESULTS AND EMERGENT THEMES
The coach interviews highlight the differences in the creative work-
flow while using TunePad. As a group of individuals with varied
musical preferences and levels of expertise, the coaches produced
a wide range of final musical pieces. We describe the common
interaction patterns with TunePad and also report on some higher-
level variations in participants’ (the participant / coach names are
pseudonymized) overall composition processes.

All participants followed a highly iterative composition process,
often alternating between periods of coding and composition fol-
lowed by “musical debugging”. That is, playing one or more of their
TunePad cells and comparing it to the original song, or playing com-
pleted and “in progress” cells simultaneously to verify timing. Since
all the songs were covers, changes made between iterations were
directed towards refining the composition towards a “correct” ver-
sion of the song rather than open-ended musical experimentation.
However, even within this more constrained context, participants
employed considerable ingenuity and creativity.

7.1 Theme 1: Using multiple representations
and playable instruments

Bamberger and diSessa [2] argue that different music-related repre-
sentations foreground different aspects of sound: “each [representa-
tion] captures some features while ignoring or minimizing others.”
Because participants in our sessions were covering existing songs,
their compositions were grounded in the original pieces, with the
goal of the composition being to replicate the original sound in a
manner deemed accurate or suitable.

All the participants played the original song multiple times and
listened for melodies/hooks or percussive patterns that stood out.
Particularly for participants who were less familiar with conven-
tional sheet music notation, the virtual, playable musical instru-
ments at the bottom of each TunePad cell served as an important
tool for translating between different types of musical represen-
tations. In keyboard/synth cells (Figure 3 and Figure 6, left), for
instance, the virtual playable instrument includes both the name
of each note and the corresponding numeric value used by the
playNote function. This affords a one- or two-step translation from
alternate representations, including online guitar tabs featuring
note names. One participant, who had no previous music composi-
tion experience, was working on the song Fake Love by Drake. He
made extensive use of a piano tutorial video he found on YouTube,
which featured a top-down video of hands playing the melody on
piano, as well as an overlaid piano roll view in which each note
scrolls down from the top of the screen in time with its position in
the song. He made use of the text cells’ capability for embedding
videos, placing a text cell directly above the cell he was working in
and embedding the tutorial video within it. To compose the song, he
repeatedly moved between the embedded tutorial and his keyboard
cell, visually comparing the position of the falling notes on the
video’s piano keys to the virtual piano keys in the TunePad cell,
then noting the overlaid note number on the TunePad cell before
writing playNote statements. Thus, the playable instruments served
as a straightforward translation tool for a variety of visual repre-
sentations. Additionally, nearly all participants used the playable
instruments to quickly test out a section of the song based on what

CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA Mike Horn et al.

they heard in the original, allowing for translation based on sound
as well.

7.2 Theme 2: Using musical constants
Aside from using the playable instruments to translate between
external representations of a song and the numeric representations
used by TunePad, several participants created mappings in code
between a numeric representation and a note name, either by declar-
ing variables or by using a constants module built into TunePad.
For a participant with prior music composition experience, the
constants allowed for a more direct process of converting between
representations—he was able to read a sheet music representation
and construct playNote statements for each chord, without needing
to use the playable piano. This underlines the fact that a particular
melodic phrase could be constructed by leveraging a creator’s com-
position experience and the availability of sheet music, without
having to constantly switch back-and-forth between coding and
playing the notes on the keyboard. One nice property of computer
code is the freedom to define variables and other abstractions to
suit the task at hand and the creator’s own workstyle.

7.3 Theme 3: Using the piano roll to verify and
debug

The automatically generated “piano roll” view (see Figure 2 for an
example) is an output representation that played multiple roles
in the participants’ composition processes. Participants used the
piano roll view to quickly check and verify the output of a cell.
They often looked at the piano roll before listening to the output
to double-check that a track was the correct number of measures,
or to ensure that a particular note or musical phrase started on the
correct/intended beat. Because the vertical position of a bar in the
piano roll view corresponds to the pitch of a note, the piano roll
was often used to visually trace through a song to isolate a note
of concern. One of the coaches, Ian, made use of this feature in
recreating Everything I Wanted by Billie Eilish. In this example of
extended debugging— after coding a melody, he scrolled through
the piano roll view to verify that it was the correct number of beats.
He played the cell and countedmeasure-by-measure to discover that
he was one measure short. After listening to the original song, he
realized one of his notes was one beat short; he then traced through
the cell by moving his mouse cursor over each bar in the piano roll
view and humming along. Upon reaching the problematic note, Ian
moved to the corresponding line in the code section (hovering over
an entry in the piano roll highlights the corresponding line of code)
and fixed his mistake. As he summed it up: “if I just had an IDE with
an empty text document that I threw a bunch of Python code into, I’d
really have no idea what this was doing without this visual aid [the
piano roll] here”.

7.4 Theme 4: Different composition choices
Participants took distinct approaches to structure and compose
their song in TunePad. Their overall vision(s) for each composi-
tion was informed by the intended audience for the piece (per-
sonal or for younger learners), their personal aspirations for the
finished composition, and their take on TunePad playbooks being

software or musical artifacts. We identify different strategies and
how TunePad’s design affords a wide range of creative approaches.

7.4.1 Composition Workflow. There was no all-encompassing
workflow used to arrive at a “completed” piece. In creating covers
of existing songs, participants exhibited considerable creativity. Par-
ticipants made distinct choices in whether and how to iteratively
refine individual cells or sections of their composition. One partic-
ipant, George, described his typical process as starting by seeing
“what [he] could mess around with,” choosing to “tinker” with the
timing of repeated bass notes early on rather than modifying the
tempo of the entire composition. He was working on a recreation
of Time for Some Action by N.E.R.D. After creating the percussion
and bassline cells, he added an additional percussion cell with a
different drumkit, attempting to layer additional drum sounds on
top of his original percussion to make it more closely match the
original sound. Choices of sound, note volume, instrument, or voice,
and combining multiple sounds to match the original song were
common across all participants; one participant (Cass) also used
TunePad’s built-in recording studio to record a shaker sound for
her composition, since she felt that the sounds in the pre-recorded
sound library were not “close enough” to the original song, Billie
Jean byMichael Jackson. These decisions added variation and depth
to even simple compositions, with some participants devoting time
to precisely select a ‘correct’ sound in a cell before starting to com-
pose, and others leaving it for later refinement. In particular, Ian
categorized certain aspects of TunePad as “post-production,” akin
to what would be done in professional music production contexts.
Thus, TunePad’s design afforded workflows where participants
could choose which elements of their sound to refine, and in which
order to refine them.

7.4.2 Top-down vs. Bottom-up. A majority of participants adopted
a “bottom-up” approach— starting by breaking the song into man-
ageable pieces, coding each piece in chronological order, note-by-
note, usually starting with the track that appeared first in the song.
However, some coaches took a more “top-down” approach, starting
by coding higher-level structural pieces and filling in the individual
notes later. For instance, in coding one track of Bad Guy by Billie Eil-
ish, Naza began by first defining variables for each note that would
be played, writing the definition for the function that would play
the notes, and within that function, writing the beginning of a loop.
Then, she filled in the contents of the loop based on what needed
to be looped in the song. No participant used solely a top-down or
bottom-up approach, but this difference represents a shift in how
participants think about their compositions as computational cre-
ations. By starting with a loop, Naza began with an understanding
of the repeated components in her song and how they could be
represented in code. While other participants recognized repeated
sections as they were composing, and often copy-pasted lines of
code in these instances, Naza’s use of a for loop made this pattern
immediately more prominent.

7.5 Theme 5: Emergent coding (best) practices
The choices of song structure and representation in code relate to
participants’ understanding of their compositions as software arti-
facts. As undergraduate Computer Science students, all participants

TunePad Playbooks CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA

were presumably somewhat familiar with good coding practices.
Participants exhibited this understanding numerous times, for in-
stance by making use of variables and constants, which “make
a whole lot more sense reading it than just random numbers ev-
erywhere” (Ian). In the interview participants also discussed other
elements of their coding style; multiple participants mentioned
that for most instances of writing code in TunePad, they would
include helper functions or refactor their code to make it more
readable not just for themselves but also because of their roles as
coaches/mentors for younger learners.

7.6 Theme 6: Composition for intended
audience and live performance

Participants’ approaches to composition were also influenced by
their intended audience. For example,Marshall was recreatingMood
by 24kgoldn to present and perform for one of his sessions with
middle-school learners. At various points in describing his composi-
tion process, Marshall identified how he structured his composition
to make the piece easy for novice learners and “performable,” such
that he could show the piece to his students in a more engaging
and illustrative way than by just pressing the play button. He split
up the composition into multiple cells, each containing minimal
code. The percussion was split into multiple drumkit cells, one for
each distinct drum sound. By sequentially pressing the play button
on each cell, he could “perform” the piece live by layering each
element of the piece sequentially. He pointed out several places
where he might have used a while loop or a function to make the
code “cleaner,” but that it would made the code less readable or
confusing for beginners.

In another instance, Marshall noted a difference between how he
would approach writing code if it were intended for himself rather
than for an audience of novice learners. Realizing that a section
“need[ed] to get pitched up a lot,” he indented the section and added
a line with transpose(12). this put the phrase in a transpose block
which pitched it up an octave; after playing the section and verifying
correctness, he undid his changes and modified the variables he
was using by changing their assignment to their original value,
plus 12. He said that the transpose(12): statement would be less
immediately understandable to an external audience.

Finally, Marshall also made implicit creative choices in how he
translated a song into a shortened version in TunePad. In line with
his desire to make it performable for novice learners, Marshall chose
a part of the song’s chorus that looped seamlessly; that way, he
could begin by playing one track, then “layer” each additional track
on top by starting it while the other tracks loop continuously. This
choice in converting a full song (several minutes in duration) to a
short TunePad composition was different from other participants’
approaches, which was typically to cover a section of a song which
started at the beginning. Short segments designed to be looped are
a natural fit for TunePad.

8 DISCUSSION
We hope that these artifact-based interviews make a convincing
case that music making with code can be best characterized as part
of a rich, creative ecosystem that goes well beyond a programmer

interacting with an IDE. Our coaches made use of a variety of rep-
resentations and resources—including YouTube videos, guitar tabs,
MIDI keyboards, TunePad’s built-in instruments, and abstractions
that they created for themselves in code. They also relied heavily
on the visual piano roll to musically debug layers of their composi-
tion. The multiple playbook cells offered flexibility in terms of the
structural composition of their cover songs and how they would
use their projects with their intended audience of middle school
learners. Our highest-level takeaway is that when thinking about
designs that bring together music and coding, we should consider
how creators go about coordinating a wide variety of tools, repre-
sentations, and workflows. It’s important to focus on the overall
creative environment, not just the programming language itself. A
secondary takeaway is that our computational notebook paradigm,
while far from the only solution, can support flexible workflows
that bring together a variety of music making resources. As a side
note, it was interesting to hear from coaches how tinkering with
compositions through code changed the way that they thought
about music. One of the coaches (Naza) recounted a moment of
hearing a song on the radio when in the car with other TunePad
coaches, when the group suddenly came to the collective realization
that the song they were listening to could be easily broken up into
parts that fit together as a TunePad composition: “I feel like all of us
have just kind of been like forced, and just like, I’m just never gonna
get out of the habit now, of like separating the different parts of the
melody.” This same coach, a Computer Science student who had
never taken an in-person CS course due to the pandemic, told us
that she had become more aware of how computer science as a
field of study can be creative (or artistic). We take these quotes as
anecdotal but also encouraging that the TunePad playbook platform
affords meaningful creative experiences with code.

9 LIMITATIONS AND FUTUREWORK
A major limitation of the current study is that we focus more on
advanced learners (coaches) and not themiddle school students who
were using TunePad as part of summer out-of-school programs. It’s
clear that the experience of complete beginners will look different,
and this should be documented in future work. From a technical
and design perspective, there are many features and improvements
we hope to add to the platform over time. A major area of future
work will be to understand the collaborative music-making and
live performance features better, including additional designs to
support those use cases.

ACKNOWLEDGMENTS
The authors would like to thank Melanie West, Cameron Roberts,
IzaiahWallace, Nichole Pinkard, Jason Freeman, and BrianMagerko
for their assistance with interface design, curriculum design, data
collection, and coding. TunePad’s graphic design was done by Tom
Knapp (https://99designs.com/profiles/celadon). We thank our un-
dergraduate coaches and many school/community partners. This
research was supported by grants DRL-1612619, DRL-1451762, DRL-
1837661, and DRL-2119701 from the National Science Foundation.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the NSF.

https://99designs.com/profiles/celadon)

CHI ’22, April 29–May 05, 2022, New Orleans, LA, USA Mike Horn et al.

REFERENCES
[1] Samuel Aaron and Alan F Blackwell. 2013. From Sonic Pi to Overtone: creative

musical experiences with domain-specific and functional languages. In Proceed-
ings of the first ACM SIGPLAN workshop on Functional art, music, modeling &
design. ACM, 35–46.

[2] Jeanne Bamberger and Andrea diSessa. 2003. Music as Embodied Mathematics:
A study of mutually informing affinity. International Journal of Computers for
Mathematical Learning 8 (2003), 123–160.

[3] Jeanne Bamberger. 2013. Discovering the musical mind: A view of creativity as
learning. Oxford University Press.

[4] Jeanne Bamberger. 2015. A Brief History of Music, Computers and Thinking:
1972–2015. Digital Experiences in Mathematics Education 1, 1 (2015), 87–100.

[5] Alan F Blackwell and Sam Aaron. 2015. Craft practices of live coding language
design. In Proc. First International Conference on Live Coding. Zenodo.

[6] Jody Clarke-Midura, Frederick Poole, Katarina Pantic, Megan Hamilton, Chongn-
ing Sun, and Vicki Allan. 2018, February. How near peer mentoring affects middle
school mentees. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (pp. 664-669).

[7] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research Association, Vancouver,
Canada, Vol. 1. 25.

[8] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pp. 1-12. 2020.

[9] Jason Freeman and Brian Magerko. 2016. Iterative composition, coding and peda-
gogy: A case study in live coding with EarSketch. Journal of Music, Technology &
Education 9.1 (2016), 57-74.

[10] Jason Freeman, Brian Magerko, Doug Edwards, Tom Mcklin, Taneisha Lee, and
Roxanne Moore. 2019. EarSketch: engaging broad populations in computing
through music. Commun. ACM 62, 9 (2019), 78–85.

[11] Philip J Guo. 2013. Online Python Tutor: Embeddable Web-Based Program Visu-
alization for CS Education. In Proceedings of the 44th ACM Technical Symposium
on Computer Science Education. ACM, 579–584.

[12] Michael Horn, Amartya Banerjee, Melanie West, Nichole Pinkard, Amy Pratt,
Jason Freeman, Brian Magerko, TomMcKlin. 2020. TunePad: Engaging learners at
the intersection of music and code. Proceedings of the International Conference
of the Learning Sciences.

[13] Jeremiah W Johnson. 2020. Benefits and Pitfalls of Jupyter Notebooks in the
Classroom. In Proceedings of the 21st Annual Conference on Information Technology
Education. 32–37.

[14] Yasmin B Kafai, Shiv Desai, Kylie A Peppler, Grace M Chiu, and Jesse Moya. 2008.
Mentoring partnerships in a community technology centre: A constructionist ap-
proach for fostering equitable service learning.Mentoring & Tutoring: Partnership
in Learning, 16(2), 191-205.

[15] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol Will-
ing. 2016. Positioning and Power in Academic Publishing: Players, Agents, and
Agendas. IOS Press, Chapter Jupyter Notebooks—a publishing format for repro-
ducible computational workflows, 87–90.

[16] Victor Lazzarini. 2013. The development of computer music programming sys-
tems. Journal of New Music Research 42, 1 (2013), 97–110.

[17] Victor Lazzarini, Steven Yi, Joachim Heintz, Øyvind Brandtsegg, Iain McCurdy,
et al. 2016. Csound: a sound and music computing system. Springer.

[18] Brian Magerko, Jason Freeman, Tom Mcklin, Mike Reilly, Elise Livingston, Scott
Mccoid, and Andrea Crews-Brown. 2016. Earsketch: A STEAM-Based Approach
for Underrepresented Populations in High School Computer Science Education.
ACM Transactions on Computing Education (TOCE) 16, 4 (2016), 14.

[19] Tom McKlin, Brian Magerko, Taneisha Lee, Dana Wanzer, Doug Edwards, and
Jason Freeman. 2018. Authenticity and personal creativity: How EarSketch affects
student persistence. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. 987–992.

[20] Max MSP. A Playground for Invention. 2021. Retrieved September 2, 2021 from
https://cycling74.com/products/max

[21] Seymour Papert. 1980.Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

[22] William Payne and S. Alex Ruthmann. 2019. Music Making in Scratch: High
Floors, Low Ceilings, and Narrow Walls. Journal of Interactive Technology and
Pedagogy 15, (2019).

[23] Pure Data. 2021. Retrieved September 2, 2021 from https://puredata.info.
[24] Mitchel Resnick and Brian Silverman. 2005. Some reflections on designing con-

struction kits for kids. In Proceedings of the 2005 Conference on Interaction Design
and Children. 117–122.

[25] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay S Silver, Brian
Silverman, and others. 2009. Scratch: Programming for all. Commun. ACM 52, 11,
60–67.

[26] Ricarose Roque, Natalie Rusk, and Mitchel Resnick.2016. Supporting diverse and
creative collaboration in the Scratch online community. In Mass collaboration
and education. Springer, 241–256.

[27] David Williamson Shaffer and Mitchel Resnick. 1999. " Thick" authenticity: New
media and authentic learning. Journal of Interactive Learning Research 10, 2 (1999),
195–216.

[28] Ben Shneiderman. 2003. Leonardo’s laptop: human needs and the new computing
technologies. MIT Press.

[29] Mary Simoni and Roger B Dannenberg. 2013. Algorithmic Composition: A Guide
to Composing Music with Nyquist. University of Michigan Press.

[30] Heinrich Taube. 1991. Common Music: A music composition language in Com-
mon Lisp and CLOS. Computer Music Journal 15, 2 (1991), 21–32.

[31] Ge Wang. 2007. A history of programming and music. In The Cambridge Com-
panion to Electronic Music. Cambridge University Press, Cambridge, UK, 55-71.

[32] Ge Wang, Perry R Cook, et al. 2003. ChucK: A concurrent, on-the-fly, audio
programming language. In Proceedings of the International Computer Music Con-
ference (ICMC).

[33] Dana Wanzer, Tom McKlin, Doug Edwards, Jason Freeman, and Brian Magerko.
2019. Assessing the Attitudes Towards Computing Scale: A Survey Validation
Study. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. ACM, 859–865.

[34] Uri Wilensky and Seymour Papert. 2010. Restructurations: Reformulations of
knowledge disciplines through new representational forms. Constructionism
(2010).

[35] Scott Wilson, David Cottle, and Nick Collins. 2011. The SuperCollider Book. The
MIT Press.

[36] Xambó, Anna, Jason Freeman, Brian Magerko, and Pratik Shah. 2016. Challenges
and new directions for collaborative live coding in the classroom. In International
Conference of Live Interfaces (ICLI 2016).

https://cycling74.com/products/max
https://puredata.info

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Related work in music and coding
	2.2 Computational Notebooks

	3 DESIGN PRINCIPLES
	3.1 Playful Interaction First
	3.2 From Playful Exploration to Deep Dive
	3.3 Music that Sounds Good
	3.4 Performability (Live Coding)
	3.5 Shareability and Collaboration
	3.6 Coding Amplifies Creativity

	4 DESIGN OVERVIEW
	4.1 Independent evaluation and cell scope
	4.2 Support for live coding
	4.3 Collaborative editing & pair programming
	4.4 Multiple representations of music
	4.5 Debugging features
	4.6 Coded sound library
	4.7 Authentic music production tools
	4.8 Multiple voices for each instrument

	5 SOFTWARE ARCHITECTURE AND IMPLEMENTATION
	6 EXAMPLES OF CREATIVE PRODUCTION WITH TUNEPAD
	6.1 Study population
	6.2 Data collection and methods

	7 RESULTS AND EMERGENT THEMES
	7.1 Theme 1: Using multiple representations and playable instruments
	7.2 Theme 2: Using musical constants
	7.3 Theme 3: Using the piano roll to verify and debug
	7.4 Theme 4: Different composition choices
	7.5 Theme 5: Emergent coding (best) practices
	7.6 Theme 6: Composition for intended audience and live performance

	8 DISCUSSION
	9 LIMITATIONS AND FUTURE WORK
	Acknowledgments
	References

